The dominant photon detectors and focal plane arrays (FPAs) in the mid-wave infrared (MWIR) range (λ = 3 μm to 5 μm) use single crystal InSb and HgCdTe materials. The cost of these detectors is high, and cooling at approximately 80 K to 120 K is required to reduce the dark current. Colloidal quantum dots (CQDs) can be used to provide the speed and detectivity (D*) of the quantum detectors with lower fabrication costs than those of single crystal epitaxial materials. The aim of this study is to develop a MWIR area array sensor with an HgCdTe-ternary alloyed semiconductor CQD using a commercially available silicon readout integrated circuit (ROIC). First, we synthesized a solution processed HgCdTe CQD responsive in the MWIR range at room temperature and developed a Schottkey junction photodiode array of 10 × 10 pixels based on the same quantum dots (QDs) to produce a HgCdTe-Si interface suitable for a MWIR photodiode at room temperature. After ensuring its functionality, we developed a 320 × 256-pixel focal plane array (FPA) responsive in the MWIR region by hybridization of the HgCdTe CQD layer over a silicon ROIC die with a direct injection input circuit. The FPA was operated using an indigenously developed Field Programmable Gate Array (FPGA)-based drive unit, and different IR targets were imaged to evaluate its use as a low-cost MWIR FPA. NEΔT value of 4 K achieved at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.