The composite membranes of PVDF/TiO 2 were prepared by a phase-inversion technique. Different amounts of TiO 2 with respect to the weight of the polymer were incorporated in the casting solution to study qualitatively and quantitatively the antifouling property of the membrane. The membrane morphology was studied using a high-resolution scanning electron microscopy and atomic force microscopy, whereas the crystalline nature was studied using X-ray diffraction method. The interfacial interactions between foulants and TiO 2 immobilized membranes were also evaluated using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach. The XDLVO theory revealed an increase in repulsive interactive energy barrier with an increase in TiO 2 loading, thus causing to improve the antifouling property of the membrane. Intercalation of TiO 2 nanoparticles efficiently improved the porosity and wettability of the polymeric membranes, which could be confirmed by the contact angle analyzer analysis. The modified PVDF membranes exhibited excellent antimicrobial properties against Gram-negative Escherichia coli as confirmed from the halo zone and activity test. The permeation experimental results also showed high protein rejection of bovine serum albumin and humic acid (foulant) for membranes with optimum TiO 2 loading of 0.01 g/g of PVDF polymer. However, at a concentration of 0.02 g TiO 2 /g of PVDF a negative effect on the membrane property was observed due to the former non-uniform distribution.
Hydrophobic polyvinylidene fluoride membrane was reformed to the hydrophilic membrane by incorporating synthesized titanium dioxide nanoparticles using Cajanus cajan seed extract. Spectroscopic and microscopic techniques characterized the composite membrane. The X-ray diffraction confirms the anatase phase of titanium dioxide nanoparticles of crystalline size 15.89 nm. The effect of titanium dioxide concentration on the thermodynamical and rheological properties on the polyvinylidene fluoride casting solution was investigated by the triangle phase diagram and viscosity measurement. It was concluded that titanium dioxide introduction caused thermodynamic enhancement, but the impact of rheological hinderance was higher at high concentrations. The polyvinylidene fluoride/titanium dioxide membranes were used as a bi-functional membrane to evaluate the rejection of chromium (VI) from wastewater; then, they were applied as sunlight-active catalyst membrane to reduce the concentrated chromium (VI) to chromium (III) by reduction. It was concluded that at 0.02 wt% of titanium dioxide, the maximum rejection of 85.59% and a% reduction of 92% was achieved with enhanced flux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.