The machinability of materials is highly affected by their hardness, and it affects power consumption, cutting tool life as well as surface quality while machining the component. This work deals with machining of annealed AISI 4340 alloy steel using a coated carbide tool under a dry environment. The microhardness of annealed and non-annealed workpieces was compared and a significant reduction was found in the microhardness of annealed samples. Microstructure examination of the annealed sample revealed the formation of coarse pearlite which indicated a reduction of hardness and improved ductility. A commercially CVD multilayer (TiN/TiCN/Al2O3/ZrCN) coated cemented carbide cutting tool was employed for turning quenched and tempered structural AISI 4340 alloy steel by varying machining speed, rate of feed, and depth of cut to evaluate the surface quality, machining forces, flank wear, and chip morphology. According to the findings of experiments, the feed rate possesses a high impact on surface finish, followed by cutting speed. The prominent shape of the serrated saw tooth chip was noticed at a higher cutting speed. Machined surface finish and cutting forces during turning is a function of the wear profile of the coated carbide insert. This study proves that annealing is a low-cost and economical process to enhance the machinability of alloy steel.
The machined surface integrity in the turning of hardened steels is adversely influenced by heat generation and friction which requires pacification of the temperature by the effective cooling-lubrication approach and cutting tool performance. The present research analyzes the surface integrity of hardened AISI 4140 steel during turning with recently developed scalable pulsed power plasma SPPP-AlTiSiN coated carbide tool under nanofluid-assisted minimum quantity lubrication (MQL). Zinc oxide nanoparticles and environmentally friendly radiator coolant are mixed to prepare the nano cutting fluid. This analysis addresses the various aspects of surface integrity concerning surface morphology, machined surface hardness, residual stress and white layer development, and machined surface finish under varying cutting parameters (depth of cut, speed, feed, nose radius). Response surface methodology (RSM) is suggested to predict and to optimize the surface roughness in hard turning. Thereafter, the predictive modelling and optimization results are implemented for economic analysis. According to the findings of the experiments, with a contribution of 58.18%, the feed rate possesses a high impact on the surface finish, followed by the nose radius (12.32%) and speed (0.85%). Consequently, the machined surface quality improved with the increase of the nose radius because of the minimum tool wear and due to the increase of the effective length of the cutting edge. At optimum cutting conditions, the tool life of SPPP-AlTiSiN coated carbide insert is noted as 46 minutes under nanofluid-MQL and consequently, it estimated the overall machining cost per component as Rs.23.12 in Indian currency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.