Mathematical models are useful for predicting the reactions of watercourses such as rivers due to the entry of contaminants. Some of these models are able to simulate the effects of present and future loadings as well as aid managers and officials in making decisions even if the data are sparse. In other words, river water quality preservation requires more investment in wastewater treatment and/or the installation of collection and control systems; it may also limit activity expansion in the river basin. The conservation of watersheds such as the Maroon and Jarahi basin, which provide water for drinking and for industrial and agricultural use, is socio-economically vital. Therefore, the first stage of managing the conservation of water resources is understanding their qualitative changes. For this purpose, the QUAL2KW mathematical model was utilized to simulate the river water quality in this example region. According to the reported values of water quality parameters and pollutants at monitoring stations, it was established that the river is at a critical condition in terms of biochemical oxygen demand (BOD) pollution due to the discharge of urban and industrial wastewater, as well as high electrical conductivity (EC) due to the drainage of agricultural lands. Based on the statistics calculated during the validation step, the authors concluded that the QUAL2KW water quality model is reliable in the simulation of qualitative parameters and the pollution data of the study area; namely the Maroon and Jarahi river basin located in the south-west of Iran. This will help stakeholders to better manage watersheds with sparse data. This region has been suffering from climate change which has led to droughts and the construction of several dams to retain water. For the second and third stations, the NASH (named after the mathematician John Forbes Nash) values were 0.96 and 0.92, respectively, indicating a relatively high model accuracy. The evaluation using the root mean square errors (RMSE) and NASH showed that the quality of water at the second station was better than the other two stations based on the coefficient of determination R2. Since there were three drains at station number 3, the wastewater entering the Maroon River had a higher level of contamination.
In this study, the effect of collar shape and its alignment on reducing scour depth in the front part of the structure, with the pier under clear water conditions, was investigated to determine changes in the flow pattern around the structure. The collars were examined in two asymmetrical shapes with dimensions of and at three levels of installation relative to the bed: bed level, 1 and 2 cm above the bed. The results revealed that the presence of the collar not only reduced the ultimate scouring depth but also delayed the formation of the scouring hole. This impact was observed to be greater as the size of the collar increased. In addition, reducing the alignment of the collars can lead to better performance of the collar and its efficiency in the cost of the design. Therefore, collars installed on the bed surface indicated good performance in controlling scour. On the other hand, once the flow characteristics around the bridge pier with and without collar were examined, it was determined that affecting the downstream flow reduces the strength of the vortices and changes the reciprocating behavior and the displacement of the vortices.
This study uses a physical experimental model to investigate the scale effect of cylindrical bridge piers on local scour. Non-dimensional public relations are developed after determining the effective parameters. Experiments are carried out to estimate the maximum scour depth around cylindrical piers with 10, 20, 30, 40, 60 and 100 mm in diameter in a laboratory channel for well-sorted gradation of sediment particles. The average diameters of sediment particles are 0.5 and 0.7 mm under clear water conditions and the relative speeds are 0.67, 0.76, 0.86 and 0.95. Scour around the piers of Naderi and Fifth Bridges in Ahvaz is measured and the results are compared to the physical model results. This indicates that for the piers of less than 30 mm in diameter, the relative scour depth is just a function of the particle Froude Number. In addition to this, it is related to the ratio of the pier diameter to the flow depth for larger piers. The actual data collected from the mentioned bridges pier scour are compared to the physical experimental results. Accordingly, it is observed that the physical experimental results are highly agree with the actual one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.