Conventional wastewater treatment plants (CWTPs) are intensive energy consumers. New technologies are emerging for wastewater treatment such as microbial electrolysis cells (MECs) that can simultaneously treat wastewater and generate hydrogen as a renewable energy source. Mathematical modeling of single and dual-chamber microbial electrolysis cells (SMEC and DMEC) has been developed based on microbial population growth in this study. The model outputs were validated successfully with previous works, and are then used for comparisons between the SMEC and DMEC regarding the hydrogen production rate (HPR). The results reveal that the daily HPR in DMEC is higher than in SMEC, with about 0.86 l H2 and 0.52 l H2, respectively, per 1 L of wastewater. Moreover, the results have been used to compare the HPR in water electrolysis (WE) processes and MECs. WE consume 51 kWh to generate 1 kg of hydrogen, while SMEC and DMEC require only 30 kWh and 24.5 kWh, respectively.
Urban wastewater could be converted into energy if microbial electrochemical technologies (METs) like microbial dual-chamber electrolysis cells (MDEC) or microbial fuel cells (MFC) are applied as a treatment method. Mathematical modelling of MFC and MDEC for wastewater treatment and energy recovery has been developed in this study. The Radaue method has been used to solve ordinary differential equations (ODEs), and the model outputs were successfully validated with previous experimental and modelling data. A case study in Montreal, Canada, has also been considered for testing the application of METs on an urban scale with a total daily wastewater flow of 75,000 litres/day. The results show that from 1 m3 of wastewater, MDEC and MFC can generate 0.077 kg H2 and 0.033 kWh, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.