Abstract-Gold price prediction is a very complex nonlinear problem which is severely difficult. Real-time price prediction, as a principle of many economic models, is one of the most challenging tasks for economists since the context of the financial agents are often dynamic. Since in financial time series, direction prediction is important, in this work, an innovative Recurrent Neural Network (RNN) is utilized to obtain accurate Two-StepAhead (2SA) prediction results and ameliorate forecasting performances of gold market. The training method of the proposed network has been combined with an adaptive learning rate algorithm and a linear combination of Directional Symmetry (DS) is utilized in the training phase. The proposed method has been developed for online and offline applications. Simulations and experiments on the daily Gold market data and the benchmark time series of Lorenz and Rossler shows the high efficiency of proposed method which could forecast future gold price precisely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.