BackgroundCutaneous leishmaniasis is an infectious disease caused by flagellate protozoa of the genus Leishmania. In Morocco, anthroponotic cutaneous leishmaniasis due to Leishmania tropica is considered as a public health problem, but its epidemiology has not been fully elucidated. The main objective of this study was to detect Leishmania infection in the vector, Phlebotomus sergenti and in human skin samples, in the El Hanchane locality, an emerging focus of cutaneous leishmaniasis in central Morocco.MethodsA total of 643 sand flies were collected using CDC miniature light traps and identified morphologically. Leishmania species were characterized by ITS1 PCR-RFLP and ITS1-5.8S rRNA gene nested-PCR of samples from 123 females of Phlebotomus sergenti and 7 cutaneous leishmaniasis patients.ResultsThe sand flies collected consisted of 9 species, 7 of which belonged to the genus Phlebotomus and two to the genus Sergentomyia. Phlebotomus sergenti was the most predominant (76.67%).By ITS1 PCR-RFLP Leishmania tropica was found in three Phlebotomus sergenti females and four patients (4/7). Using nested PCR Leishmania tropica was identified in the same three Phlebotomus sergenti females and all the 7 patients. The sequencing of the nested PCR products recognized 7 haplotypes, of which 6 have never been described.ConclusionsThis is the first molecular detection and identification of Leishmania tropica in human skin samples and Phlebotomus sergenti in support of its vector status in El Hanchane. The finding of seven Leishmania tropica haplotypes underscores heterogeneity of this species at a high level in Morocco.
BackgroundCutaneous leishmaniasis is an infectious disease caused by various species of the flagellate protozoan Leishmania. During the past 20 years, cutaneous leishmaniasis has emerged as a major public health threat in Morocco. The main objective of this study was to study the occurrence of Leishmania infection in vectors and to identify sand fly blood meal sources in an endemic locality of cutaneous leishmaniasis within Sefrou province, where the vectors of leishmaniasis were still unknown.Methods2650 sand flies were collected using CDC miniature light traps and identified morphologically. The identified sand flies were tested for Leishmania infection by nested PCR. The source of blood meal of 10 freshly engorged females: 6 Phlebotomus longicuspis and 4 Phlebotomus sergenti, was determined using the Cyt b sequence.ResultsThe collected sand flies consisted of 10 species, seven of which belonged to the genus Phlebotomus and three to the genus Sergentomyia. The most abundant species was P. longicuspis, accounting for 72% of the total sand flies collected. In females of three P. longicuspis and four P. sergenti, Leishmania infantum and Leishmania tropica DNA was detected, respectively.The source of blood meal of engorged females showed that all sand flies tested fed on humans.ConclusionsWe report for the first time the natural infection of P. longicuspis with L. infantum in Morocco. The high frequency of this species in this region, in addition to its anthropophilic character make P. longicuspis the putative vector of L. infantum in this cutaneous leishmaniasis focus where L. tropica is confirmed as the causative agent of the disease and P. sergenti as its vector. The presence of L. infantum, and its presumed vector in this area, makes this a site of high risk of visceral leishmaniasis, mostly because of the proximity of a focus of human and canine visceral leishmaniasis.
Background Phlebotomus (Paraphlebotomus) sergenti is at least one of the confirmed vectors for the transmission of cutaneous leishmaniasis caused by Leishmania tropica and distributed widely in Morocco. This form of leishmaniasis is considered largely as anthroponotic, although dogs were found infected with Leishmania tropica, suggestive of zoonosis in some rural areas.Methodology and FindingsThis survey aimed at (i) studying the presence of Leishmania in field caught Phlebotomus sergenti, (ii) investigating genetic diversity within Leishmania tropica and (iii) identifying the host-blood feeding preferences of Phlebotomus sergenti. A total of 4,407 sand flies were collected in three rural areas of Azilal province, using CDC miniature light traps. Samples collected were found to consist of 13 species: Phlebotomus spp. and 3 Sergentomyia spp. The most abundant species was Phlebotomus sergenti, accounting for 45.75 % of the total. 965 female Phlebotomus sergenti were screened for the presence of Leishmania by ITS1-PCR-RFLP, giving a positive rate of 5.7% (55/965), all being identified as Leishmania tropica. Nucleotide heterogeneity of PCR-amplified ITS1-5.8S rRNA gene-ITS2 was noted. Analyses of 31 sequences obtained segregated them into 16 haplotypes, of which 7 contain superimposed peaks at certain nucleotide positions, suggestive of heterozygosity. Phlebotomus sergenti collected were found to feed on a large variety of vertebrate hosts, as determined by Cytochrome b sequencing of the DNA from the blood meals of 64 engorged females.ConclusionOur findings supported the notion that Phlebotomus sergenti is the primary vector of Leishmania tropica in this focus, and that the latter is genetically very heterogeneous. Furthermore, our results might be suggestive of a certain level of heterozygosity in Leishmania tropica population. This finding, as well as the feeding of the vectors on different animals are of interest for further investigation.
To investigate the transmission of phleboviruses, a total of 7,057 sandflies were collected in well-known foci of cutaneous leishmaniasis and were identified to species level according to morphological characters.Collected sandflies were tested by Nested PCR for the presence of Phleboviruses and subsequently by viral isolation on Vero cells. The corresponding products were sequenced. Toscana virus was isolated, for the first time, from 5 pools of sandflies.Hence, Toscana virus should be considered a potential risk that threatens public health and clinicians should be aware of the role of Toscana virus in cases of meningitis and encephalitis in Morocco.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.