In this research paper, we focused on the developing a secure and efficient time-series forecasting of nuclear reactions using swarm intelligence (SI) algorithm. Nuclear radioactive management and efficient time series for casting of nuclear reactions is a problem to be addressed if nuclear power is to deliver a major part of our energy consumption. This problem explains how SI processing techniques can be used to automate accurate nuclear reaction forecasting. The goal of the study was to use swarm analysis to understand patterns and reactions in the dataset while forecasting nuclear reactions using swarm intelligence. The results obtained by training the SI algorithm for longer periods of time for predicting the efficient time series events of nuclear reactions with 94.58 percent accuracy, which is higher than the deep convolution neural networks (DCNNs) 93% accuracy for all predictions, such as the number of active reactions, to see how the results can improve. Our earliest research focused on determining the best settings and preprocessing for working with a certain nuclear reaction, such as fusion and fusion task: forecasting the time series as the reactions took 0-500 ticks being trained on 300 epochs
The enormous growth in demand for WBAN services has resulted in a new set of security challenges. The capabilities of WBAN are developing to meet these needs. The complexity, heterogeneity, and instability of the mobile context make it difficult to complete these duties successfully. A more secure and flexible WBAN setting can be attained using a trust-untrust nodes classification, which is one method to satisfy the security needs of the WBAN. Considering this, we present a novel Deep Learning (DL) approach for classifying WBAN nodes using spatial attention based iterative DBN (SA-IDBN). Z-score normalization is used to remove repetitive entries from the input data. Then, Linear Discriminate Analysis (LDA) is employed to retrieve the features from the normalized data. In terms of accuracy, latency, recall, and f-measure, the suggested method's performance is examined and contrasted with some other current approaches. Regarding the classification of WBAN nodes, the results are more favorable for the suggested method than for the ones already in use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.