Abstract. The evaluation of railway line capacity is an important problem, which effects majority of problems in rail transportation planning. The railway capacity is dependent on infrastructure, traffic, and operating parameters. A key factor affecting railway line capacity is the impact of different train types. As the combination of different train types increases, more interference is generated. In this paper, for evaluation of train type interactions on railway line capacity, an integer-programming model for both line and line section is presented. The problem is formulated as a multicommodity network design model on a space-discrete time network. The railway capacity is calculated using data typically available to planners. The inputs of the model are the characteristic of each train type and railway line attributes. The model determines railway capacity based on train type mixes. In addition, this model considers impact of train types on capacity and waiting time. In order to show the features of the model, a case study is implemented in Iran Railways. The capacity tends to increase non-linearly with small incremental changes in parameters. The mixture of train types reduces the railway line capacity. The proposed model can help railway managers for long-term planning. Keywords: railway transportation, railway capacity, railway line, line section, siding track, discrete-time multicommodity network flow model, integer programming.
Purpose
One of the problems in post-earthquake disaster management in developing countries, such as Iran, is the prediction of the residual network available for disaster relief operations. Therefore, it is important to use methods that are executable in such countries given the limited amount of accurate data. The purpose of this paper is to present a multi-objective model that seeks to determine the set of roads of a transportation network that should preserve its role in carrying out disaster relief operations (i.e. known as “emergency road network” (ERN)) in the aftermath of earthquakes.
Design/methodology/approach
In this paper, the total travel time of emergency trips, the total length of network and the provision of coverage to the emergency demand/supply points have been incorporated as three important metrics of ERN into a multi-objective mixed integer linear programming model. The proposed model has been solved by adopting the e-constraint method.
Findings
The results of applying the model to Tehran’s highway network indicated that the least possible length for the emergency transportation network is about half the total length of its major roads (freeways and major arterials).
Practical implications
Gathering detailed data about origin-destination pair of emergency trips and network characteristics have a direct effect on designing a suitable emergency network in pre-disaster phase.
Originality/value
To become solvable in a reasonable time, especially in large-scale cases, the problem has been modeled based on a decomposing technique. The model has been solved successfully for the emergency roads of Tehran within about 10 min of CPU time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.