Doxycycline helps to prevent periodontal tissue breakdown by inhibiting local and systemic oxidative stress.
Thymus oil and its components are becoming increasingly popular as naturally occurring antimicrobial and antioxidant agents. The real importance of thymus on nitric oxide (NO) is unknown. NO is an important mediator in numerous physiologic and pathophysiologic events. Stasis and thrombosis in burn wound can progress as a result of the release of local mediators. The implication of NO in burn injury is not well studied. In this study, we tried to determine the role of burn-induced NO and whether thymus oil plays a protective role after a thermal injury. Rats were divided into five groups. We topically applied thymus oil, olive oil, and silverdin and sulfadiazine on the rats, respectively, during a period of 21 days after they were burned while under anesthesia. The burned control group and nonburned control group did not receive any treatment. The results of this study show that NO was overproduced by thermal injury and decreased during the days after burn injury. The decrease in rats treated with thymus and sulfadiazine was higher than the others. These data indicate that thymus oil may serve as a protective agent to the damaged tissues by decreasing the NO level. Histologic examination results show that the formation of new tissue in rats receiving thymus oil was more than other burned groups, and this finding supports our hypothesis.
The postnatal development and histochemistry of mucins of the lingual, preglottal and laryngeal glands in the quails were investigated by means of light microscopy using specific staining for complex carbohydrates. In this study, the tongues were taken from female and male quails from day 1 to day 60 after hatching. The salivary glands in quail's tongue comprised the lingual gland, with lateral and medial (paraentoglossal gland) portions that differ in morphology and histochemical staining, and the preglottal gland, with two lateral portions and one medial portion. The medial portion of the preglottal gland, which extended to the row of the laryngeal papillae on each side of the glottis, was described as the laryngeal gland. The salivary glands were present at hatching and their cells were functionally mature and secreted mucins. In quail of all ages, the histochemical reactions revealed that the cytoplasms of the secretory cells of the preglottal, laryngeal and paraentoglossal gland (medial portion of lingual gland) contained sialomucins and weakly sulphated epithelial mucins. Neutral mucins were absent in the paraentoglossal gland, while a small amount of neutral mucins was present in other glands. The mucins with vicinal diol groups, sialomucins and weakly sulphated epithelial mucins were mixed within the secretory cells of all the glands. All the histochemical reactions were restricted to the supranuclear regions of the secretory cells within the lateral portion of the lingual gland. In conclusion, the contents of mucins in the lingual, preglottal and laryngeal glands varied between different age groups, however, no differences in the glands' histochemistry between male and female quails were observed.
Manipulations of thyroid hormones have been shown to influence learning and memory. Although a large body of literature is available on the effect of thyroid hormone deficiency on learning and memory functions during the developmental stage, electrophysiological and behavioural findings, particularly on propylthiouracil administration to adult normothyroid animals, are not satisfactory. The experiments in the present study were carried out on 12 adult male Wistar rats aged 6-7 months. Hypothyroidism was induced by administering 6-n-propyl-2-thiouracil in their drinking water for 21 days at a concentration of 0.05%. The spatial learning performance of hypothyroid and control rats was studied on a Y-maze. The rats were then placed in a stereotaxic frame under urethane anaesthesia. A bipolar tungsten electrode was used to stimulate the medial perforant path. A glass micropipette was inserted into the granule cell layer of the ipsilateral dentate gyrus to record field excitatory post-synaptic potentials. After a 15-min baseline recording of field potentials, long-term potentiation was induced by four sets of tetanic trains. The propylthiouracil-treated rats showed a significantly attenuated input-output (I/O) relationship when population spike (PS) amplitudes and field excitatory post-synaptic potentials (fEPSP) were compared. fEPSP and PS latencies were found to be longer in the hypothyroid group than in the control group. The PS amplitude and fEPSP slope potentiations in the hypothyroid rats were not statistically different from those in the control rats, except for the field EPSP slope measured in the post-tetanic and maintenance phases. The hypothyroid rats also showed lower thyroxine levels and poor performance in the spatial memory task. The present study provides in vivo evidence for the action of propylthiouracil leading to impaired synaptic plasticity, which might explain deficit in spatial memory tasks in adult hypothyroid rats.
Background: Manipulating thyroid hormones has been shown to influence learning and memory. Although a large body of literature is available on the effects of thyroid hormone deficiency on learning and memory functions during developmental or adult-onset hypothyroidism, electrophysiological findings are limited. This limitation is especially notable with respect to thyroxine administration in adult, normothyroid animals. Methods: Experiments were carried out on 12 adult male Wistar rats, each 9–10 months of age. Rats were randomly divided into hyperthyroid (0.2 mg/kg/day intraperitoneal thyroxine injection, for 21 days) and control groups (n = 6 animals in each group). Following spatial learning performance tests on hyperthyroid and control groups, rats were anesthetized with urethane and placed in a stereotaxic frame. A bipolar, tungsten electrode was used to stimulate the medial perforant path. A glass micropipette was inserted within the granule cell layer of the ipsilateral dentate gyrus to record field excitatory postsynaptic potentials (fEPSP). Following a 15-min baseline recording of fEPSPs, long-term potentiation (LTP) was induced by four sets of tetanic pulse trains. Results: Thyroxine-treated rats showed significantly worse performance in the spatial memory task and attenuated input-output relationships in the electrophysiological analyses. Treated rats also showed a lower efficacy of LTP induction when compared with controls. Conclusion: The present study provides clear in vivo evidence for the action of L-thyroxine in the impairment of synaptic plasticity and in inducing spatial memory task deficits in adult rats. These findings may explain the complaints of cognitive function reductions in hyperthyroid patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.