BackgroundCorrect species identification of blow flies is a crucial step for understanding their biology, which can be used not only for designing fly control programs, but also to determine the minimum time since death. Identification techniques are usually based on morphological and molecular characters. However, the use of classical morphology requires experienced entomologists for correct identification; while molecular techniques rely on a sound laboratory expertise and remain ambiguous for certain taxa. Landmark-based geometric morphometric analysis of insect wings has been extensively applied in species identification. However, few wing morphometric analyses of blow fly species have been published.MethodsWe applied a landmark-based geometric morphometric analysis of wings for species identification of 12 medically and forensically important blow fly species of Thailand. Nineteen landmarks of each right wing of 372 specimens were digitised. Variation in wing size and wing shape was analysed and evaluated for allometric effects. The latter confirmed the influence of size on the shape differences between species and sexes. Wing shape variation among genera and species were analysed using canonical variates analysis followed by a cross-validation test.ResultsWing size was not suitable for species discrimination, whereas wing shape can be a useful tool to separate taxa on both, genus and species level depending on the analysed taxa. It appeared to be highly reliable, especially for classifying Chrysomya species, but less robust for a species discrimination in the genera Lucilia and Hemipyrellia. Allometry did not affect species separation but had an impact on sexual shape dimorphism.ConclusionsA landmark-based geometric morphometric analysis of wings is a useful additional method for species discrimination. It is a simple, reliable and inexpensive method, but it can be time-consuming locating the landmarks for a large scale study and requires non-damaged wings for analysis.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-017-2163-z) contains supplementary material, which is available to authorized users.
In recent decades, forensic entomology has become a useful tool in criminal investigations all over the world. Species-specific identification of flies plays an important role in this field and is obligatory for accurate calculation of the post-mortem interval. However, not all important colonizers of a corpse can be identified by common morphological keys. Due to similar morphology and the lack of keys for some taxa, especially for immature stages, DNA barcoding has become more popular during the last recent years. This development is particularly important for countries like Thailand, in which forensic entomology is a newly developing research area and which faces several challenges such as a high biodiversity of fly species. The most commonly used barcoding region in forensic entomology, the mitochondrial cytochrome oxidase subunit 1 (coI) gene, as well as a 1000-bp-long region of the 28S nuclear rRNA gene, was used to analyze and establish the molecular barcodes of 13 different species of flies of forensic relevance in northern Thailand.
Background and Aim: Staphylococcus pseudintermedius is a zoonotic bacterium commonly found in animals, especially dogs. These bacteria can survive on environmental surfaces for several months. The infection of S. pseudintermedius from the environment is possible, but properly cleaning surface objects can prevent it. This study aimed to investigate the prevalence of methicillin-resistant S. pseudintermedius (MRSP) in the environment of a recently constructed veterinary hospital in Southern Thailand, where we hypothesized that the prevalence of MRSP might be very low. Materials and Methods: At three different time points, 150 samples were collected from different environmental surfaces and wastewater across the veterinary hospital. The collection was done after the hospital's cleaning. Bacteria were purified in the culture before being identified as species by biochemical tests and polymerase chain reaction (PCR). Next, the antimicrobial-resistant profile was performed using an automated system (Vitek 2). Finally, the antimicrobial resistance genes were identified using PCR. Results: Fifteen colonies of S. pseudintermedius were isolated from the surfaces of eight floors, four tables, two chairs, and one rebreathing tube. Fourteen colonies (93.3%) were multidrug-resistant (MDR) and carried the blaZ gene (93.3%). The majority of colonies were resistant to benzylpenicillin (93.3%), cefovecin (93.3%), ceftiofur (93.3%), kanamycin (93.3%), and neomycin (93.3%). Notably, only four colonies (26.7%) were methicillin-susceptible S. pseudintermedius, whereas 11 colonies (73.3%) were MRSP and carried both the mecA and blaZ genes. Five MRSP (45.5%) were resistant to at least 14 antimicrobial drugs, represented as extensively drug-resistant (XDR) bacteria. Ten of eleven MRSP (90.9%) were Staphylococcal chromosomal mec type V, while another displayed untypeable. Despite the routine and extensive cleaning with detergent and disinfectant, MRSP isolates were still detectable. Conclusion: Many isolates of MRSP were found in this veterinary hospital. Almost all of them were MDR, and nearly half were XDR, posing a threat to animals and humans. In addition, the current hospital cleaning procedure proved ineffective. Future research should be conducted to determine the bacterial biofilm properties and bacterial sensitivity to certain detergents and disinfectants.
Background and Aim: Staphylococci are commensal bacteria and opportunistic pathogens found on the skin and mucosa. Sports animals are more prone to injury and illness, and we believe that antimicrobial agents might be extensively used for the treatment and cause the existence of antimicrobial-resistant (AMR) bacteria. This study aimed to investigate the diversity and AMR profile of staphylococci in sports animals (riding horses, fighting bulls, and fighting cocks) in South Thailand. Materials and Methods: Nasal (57 fighting bulls and 33 riding horses) and skin swabs (32 fighting cocks) were taken from 122 animals. Staphylococci were cultured in Mannitol Salt Agar and then identified species by biochemical tests using the VITEK® 2 card for Gram-positive organisms in conjunction with the VITEK® 2 COMPACT machine and genotypic identification by polymerase chain reaction (PCR). Antimicrobial susceptibility tests were performed with VITEK® 2 AST-GN80 test kit cards and VITEK® 2 COMPACT machine. Detection of AMR genes (mecA, mecC, and blaZ) and staphylococcal chromosomal mec (SCCmec) type was evaluated by PCR. Results: Forty-one colonies of staphylococci were isolated, and six species were identified, including Staphylococcus sciuri (61%), Staphylococcus pasteuri (15%), Staphylococcus cohnii (10%), Staphylococcus aureus (7%), Staphylococcus warneri (5%), and Staphylococcus haemolyticus (2%). Staphylococci were highly resistant to two drug classes, penicillin (93%) and cephalosporin (51%). About 56% of the isolates were methicillin-resistant staphylococci (MRS), and the majority was S. sciuri (82%), which is primarily found in horses. Most MRS (82%) were multidrug-resistant. Almost all (96%) of the mecA-positive MRS harbored the blaZ gene. Almost all MRS isolates possessed an unknown type of SCCmec. Interestingly, the AMR rate was notably lower in fighting bulls and cocks than in riding horses, which may be related to the owner's preference for herbal therapy over antimicrobial drugs. Conclusion: This study presented many types of staphylococci displayed on bulls, cocks, and horses. However, we found a high prevalence of MRS in horses that could be transmitted to owners through close contact activities and might be a source of AMR genotype transmission to other staphylococci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.