The COVID-19 pandemic has triggered an industrial and financial slowdown due to unprecedented regulations imposed with the purpose to contain the spread of the virus. Consequently, the positive effect on the environment has been witnessed. One of the most prominent evidences has been the drastic air quality improvement, as a direct consequence of lower emissions from reduced industrial activity. While several studies have demonstrated the validity of this hypothesis in mega-cities worldwide, it is still an unsubstantiated fact whether the same holds true for cities with a smaller urban extent and population. In the present study we investigate the temporal development of atmospheric constituent concentrations as retrieved concurrently from the Sentinel-5P satellite and a ground meteorological station. We focus on the period before and during the COVID-19 pandemic over the city of Hat Yai, Thailand and present the effect of the lockdown on the atmospheric quality over this average populated city (156,000 inhabitants). NO
2
, PM
2.5
and PM
10
concentrations decreased by 33.7%, 21.8% and 22.9% respectively in the first 3 weeks of the lockdown compared to the respective pre-lockdown period; O
3
also decreased by 12.5% and contrary to similar studies. Monthly averages of NO
2
, CO and PM
2.5
for the month April exhibit in 2020 the lowest values in the last decade. Sentinel-5P retrieved NO
2
tropospheric concentrations, both locally over the ground station and the spatial average over the urban extent of the city, are in agreement with the reduction observed from the ground station. Numerous studies have already presented evidence of the bettering of the air quality over large metropolitan areas during the COVID-19 pandemic. In the current study we demonstrate that this holds true for Hat Yai, Thailand; we propound that the environmental benefits documented in major urban agglomerations during the lockdown may extend to medium-sized urban areas as well.
Generation of energy across the world is today reliant majorly on fossil fuels. The burning of these fuels is growing in line with the increase in the demand for energy globally. Consequently, climate change, air contamination, and energy security issues are rising as well. An efficient alternative to this grave hazard is the speedy substitution of fossil fuel-based carbon energy sources with the shift to clean sources of renewable energy that cause zero emissions. This needs to happen in conjunction with the continuing increase in the overall consumption of energy worldwide. Many resources of renewable energy are available. These include thermal, solar photovoltaic, biomass and wind, tidal energy, hydropower, and geothermal. Notably, tidal energy exhibits great potential with regard to its dependability, superior energy density, certainty, and durability. The energy mined from the tides on the basis of steady and anticipated vertical movements of the water, causing tidal currents, could be converted into kinetic energy to produce electricity. Tidal barrages could channel mechanical energy, while tidewater river turbines can seize the energy from tidal currents. This study discusses the present trends, ecological effects, and the prospects for technology related to tidal energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.