Whey protein isolate (WPI)-oil (75:25) and WPI-oil-(glucose-fructose) (45:15:40) as models of high-protein systems containing either olive (OO) or sunflower oil (SO) were stored at 20 or 40 °C to investigate component interactions. The indicators of protein oxidation (carbonyl content) and aggregation (total sulfhydryl content) and heats of protein denaturation and aggregation were investigated. Highest levels of disulfide bonding and carbonyls in WPI-OO formed during the first 2 weeks of storage concomitantly with enhanced protein aggregation. WPI-OO and WPI-SO systems (prestorage) showed increased protein denaturation temperature. The WPI proteins showed higher heat sensitivity with OO or SO at 40 °C, and the system with OO showed preaggregated protein as found from decreased heats of protein aggregation. OO or SO in WPI-oil-(glucose-fructose) systems reduced heats of protein aggregation. Lipid oxidation products and nonenzymatic browning reactions in glucose-fructose-containing systems decreased the solubility of solids and increased protein aggregation, hydrophobicity, and hardening of structure.
Water distribution and miscibility of carbohydrate and protein components in biological materials and their structural contributions in concentrated solids are poorly understood. In the present study, structural relaxations and a glass transition of protein hydration water and antiplasticization of the hydration water at low temperatures were measured using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) for bovine whey protein (BWP), aqueous glucose-fructose (GF), and their mixture. Thermal transitions of α-lactalbumin and β-lactoglobulin components of BWP included water-content-dependent endothermic but reversible dehydration and denaturation, and exothermic and irreversible aggregation. An α-relaxation assigned to hydration water in BWP appeared at water-content-dependent temperatures and increased to over the range of 150-200 K at decreasing water content and in the presence of GF. Two separate glass transitions and individual fractions of unfrozen water of ternary GF-BWP-water systems contributed to uncoupled α-relaxations, suggesting different roles of protein hydration water and carbohydrate vitrification in concentrated solids during freezing and dehydration. Hydration water in the BWP fraction of GF-BWP systems was derived from equilibrium water sorption and glass transition data of the GF fraction, which gave a significant universal method to quantify (i) protein hydration water and (ii) the unfrozen water in protein-carbohydrate systems for such applications as cryopreservation, freezing, lyophilization, and dehydration of biological materials. A ternary supplemented phase diagram (state diagram) established for the GF-BWP-water system can be used for the analysis of the water distribution across carbohydrate and protein components in such applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.