Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease.
Redox reactions involving cysteine thiol-disulfide exchange are crucial for sensing intracellular levels of H(2)O(2). However, oxidation-sensitive dithiols are also sensitive to intracellular reducing agents, and disulfide bonds are thus transient. The yeast transcription factor Yap1 is activated by disulfide-induced structural changes in the nuclear export signal in a carboxy-terminal domain. We show herein that the activation of Yap1 by H(2)O(2) requires multistep formation of disulfide bonds. One disulfide bond forms within 15 s in an amino-terminal domain, and then disulfide bonds linking the two domains accumulate. The multiple interdomain disulfide bonds, which result in reduction-resistant Yap1, are required for transduction of the H(2)O(2) stress signal to induce the appropriate level and duration of specific transcription. Our results suggest both a mechanism wherein the H(2)O(2) levels might be sensed by Yap1 and the way in which the NADPH levels might be maintained by altering the redox status of Yap1.
This article describes a rapid UPLC‐MS/MS method to quantitate novel bile acids in biological fluids and the evaluation of their diagnostic potential in Niemann‐Pick C (NPC). Two new compounds, NPCBA1 (3β‐hydroxy,7β‐N‐acetylglucosaminyl‐5‐cholenoic acid) and NPCBA2 (probably 3β,5α,6β‐trihydroxycholanoyl‐glycine), were observed to accumulate preferentially in NPC patients: median plasma concentrations of NPCBA1 and NPCBA2 were 40‐ and 10‐fold higher in patients than in controls. However, NPCBA1 concentrations were normal in some patients because they carried a common mutation inactivating the GlcNAc transferase required for the synthesis of this bile acid. NPCBA2, not containing a GlcNAc moiety, is thus a better NPC biomarker.
Using liquid chromatography/electrospray ionization mass spectrometry, we have found three unconjugated bile acids [cholic acid (CA), chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA)] in the rat brain cytoplasmic fraction. CDCA was detected only upon extraction with high concentrations of guanidine, indicating that it is bound noncovalently to protein in the brain. The most abundant of the three, it was present at a concentration of 1.6 nmol/g wet weight ( ف 15 mg of protein) of brain, corresponding to almost 30 times its serum concentration. CA and DCA were present at 1/30th the concentration of CDCA. Bile acids conjugated with amino acids, sulfuric acid, and glucuronic acid were not detected. These data clearly demonstrate that unconjugated CDCA and, to a lesser extent, CA and DCA, exists in the rat brain. Bile acids are synthesized in the liver from cholesterol by the action of hepatic enzymes and excreted into the small intestine via the bile duct. In the intestinal lumen, they assist lipolysis and the absorption of fats by forming mixed micelles and then return to the liver upon absorption in the ileum and proximal colon. Because of their efficient hepatic uptake, bile acids have low concentrations in the peripheral blood. Recent observations also indicate that the nuclear bile acid receptor, the farnesoid X receptor, regulates the bile acid pool by repressing the transcription of genes encoding hepatocyte transporters (1) as well as cholesterol 7 ␣ -hydroxylase (2, 3), which is the ratelimiting enzyme for bile acid biosynthesis.
Mitochondrial dysfunction causes increased oxidative stress and depletion of ATP, which are involved in the etiology of a variety of renal diseases, such as CKD, AKI, and steroidresistant nephrotic syndrome. Antioxidant therapies are being investigated, but clinical outcomes have yet to be determined. Recently, we reported that a newly synthesized indole derivative, mitochonic acid 5 (MA-5), increases cellular ATP level and survival of fibroblasts from patients with mitochondrial disease. MA-5 modulates mitochondrial ATP synthesis independently of oxidative phosphorylation and the electron transport chain. Here, we further investigated the mechanism of action for MA-5. Administration of MA-5 to an ischemia-reperfusion injury model and a cisplatin-induced nephropathy model improved renal function. In in vitro bioenergetic studies, MA-5 facilitated ATP production and reduced the level of mitochondrial reactive oxygen species (ROS) without affecting activity of mitochondrial complexes I-IV. Additional assays revealed that MA-5 targets the mitochondrial protein mitofilin at the crista junction of the inner membrane. In Hep3B cells, overexpression of mitofilin increased the basal ATP level, and treatment with MA-5 amplified this effect. In a unique mitochondrial disease model (Mitomice with mitochondrial DNA deletion that mimics typical human mitochondrial disease phenotype), MA-5 improved the reduced cardiac and renal mitochondrial respiration and seemed to prolong survival, although statistical analysis of survival times could not be conducted. These results suggest that MA-5 functions in a manner differing from that of antioxidant therapy and could be a novel therapeutic drug for the treatment of cardiac and renal diseases associated with mitochondrial dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.