Epidemiological Modeling supports the evaluation of various disease management activities. The value of epidemiological models lies in their ability to study various scenarios and to provide governments with a priori knowledge of the consequence of disease incursions and the impact of preventive strategies. A prevalent method of modeling the spread of pandemics is to categorize individuals in the population as belonging to one of several distinct compartments, which represents their health status with regard to the pandemic. In this work, a modified SIR epidemic model is proposed and analyzed with respect to the identification of its parameters and initial values based on stated or recorded case data from public health sources to estimate the unreported cases and the effectiveness of public health policies such as social distancing in slowing the spread of the epidemic. The analysis aims to highlight the importance of unreported cases for correcting the underestimated basic reproduction number. In many epidemic outbreaks, the number of reported infections is likely much lower than the actual number of infections which can be calculated from the model’s parameters derived from reported case data. The analysis is applied to the COVID-19 pandemic for several countries in the Gulf region and Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.