Environmental niche modeling (ENM) is commonly used to develop probabilistic maps of species distribution. Among available ENM techniques, MaxEnt has become one of the most popular tools for modeling species distribution, with hundreds of peer-reviewed articles published each year. MaxEnt’s popularity is mainly due to the use of a graphical interface and automatic parameter configuration capabilities. However, recent studies have shown that using the default automatic configuration may not be always appropriate because it can produce non-optimal models; particularly when dealing with a small number of species presence points. Thus, the recommendation is to evaluate the best potential combination of parameters (feature classes and regularization multiplier) to select the most appropriate model. In this work we reviewed 244 articles published between 2013 and 2015 to assess whether researchers are following recommendations to avoid using the default parameter configuration when dealing with small sample sizes, or if they are using MaxEnt as a “black box tool.” Our results show that in only 16% of analyzed articles authors evaluated best feature classes, in 6.9% evaluated best regularization multipliers, and in a meager 3.7% evaluated simultaneously both parameters before producing the definitive distribution model. We analyzed 20 articles to quantify the potential differences in resulting outputs when using software default parameters instead of the alternative best model. Results from our analysis reveal important differences between the use of default parameters and the best model approach, especially in the total area identified as suitable for the assessed species and the specific areas that are identified as suitable by both modelling approaches. These results are worrying, because publications are potentially reporting over-complex or over-simplistic models that can undermine the applicability of their results. Of particular importance are studies used to inform policy making. Therefore, researchers, practitioners, reviewers and editors need to be very judicious when dealing with MaxEnt, particularly when the modelling process is based on small sample sizes.
Multiple-class land-cover classification approaches can be inefficient when the main goal is to classify only one or a few classes. Under this scenario one-class classification algorithms could be a more efficient alternative. Currently there are several algorithms that can fulfil this task, with MaxEnt being one of the most promising. However, there is scarce information regarding parametrization for performing land-cover classification using MaxEnt. In this study we aimed to understand how MaxEnt parameterization affects the classification accuracy of four different land-covers (i.e., built-up, irrigated grass, evergreen trees and deciduous trees) in the city of Santiago de Chile. We also evaluated if MaxEnt manual parameterization outperforms classification results obtained when using MaxEnt default parameters setting. To accomplish our objectives, we generated a set of 25,344 classification maps (i.e., 6,336 for each assessed land-cover), which are based on all the potential combination of 12 different classes of features restrictions, four regularization multipliers, four different sample sizes, three training/testing proportions, and 11 thresholds for generating the binary maps. Our results showed that with a good parameterization, MaxEnt can effectively classify different land covers with kappa values ranging from 0.68 for deciduous trees to 0.89 for irrigated grass. However, the accuracy of classification results is highly influenced by the type of land-cover being classified. Simpler models produced good classification outcomes for homogenous land-covers, but not for heterogeneous covers, where complex models provided better outcomes. In general, manual parameterization improves the accuracy of classification results, but this improvement will depend on the threshold used to generate the binary map. In fact, threshold selection showed to be the most relevant factor impacting the accuracy of the four land-cover classification. The number of sampling points for training the model also has a positive effect on classification results. However, this effect followed a logarithmic distribution, showing an improvement of kappa values when increasing the sampling from 40 to 60 points, but showing only a marginal effect if more than 60 sampling points are used. In light of these results, we suggest testing different parametrization and thresholds until satisfactory kappa or other accuracy metrics values are achieved. Our results highlight the huge potential that MaxEnt has a as a tool for one-class classification, but a good understanding of the software settings and model parameterization is needed to obtain reliable results.
Developing conservation strategies to restore populations of threatened species has been signaled as an important task by the Convention on Biological Diversity 2011-2020 targets. Species are being threatened not only by habitat loss and fragmentation but increasingly by climate change. As resources for conservation are often limited, and restoration is among the most expensive conservation strategies, developing approaches that help in the prioritization of areas for restoration efforts is a critical task. In this study, we propose a spatial multicriteria decision analysis (SMCDA) framework for identifying potential areas for plant species restoration initiatives that can explicitly take into account future climatic change. As a way to show how the framework can be applied, we took advantage of freely available niche modeling software and geospatial information to identify regional-scale priority areas for restoration of two threatened endemic tree species (i.e. Bielschmiedia miersii and Pouteria splendens) of the "Chilean Winter Rainfall-Valdivian Forest" Hotspot. The SMCDA framework allowed us not only to identify priority areas for species restoration but also to analyze how different environmental conditions and land-use types may affect the selection of areas for species restoration. Our analysis suggests that the inclusion of climate change is a key factor to assess the potential areas for species restoration because species may respond differentially to future climatic conditions. This framework is conceived to be used as a complementary approach to available landscape-scale spatial conservation planning tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.