Infectious waste disposal remains one of the most serious problems in the medical, social and environmental domains of almost every country. Selection of new suitable locations and finding the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Determining locations for infectious waste disposal is a difficult and complex process, because it requires combining both intangible and tangible factors. Additionally, it depends on several criteria and various regulations. This facility location problem for infectious waste disposal is complicated, and it cannot be addressed using any standalone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in UpperNortheastern Thailand, we considered criteria such as infrastructure, geology and social & environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy process (Fuzzy AHP). After that, a new multi-objective facility location problem model which hybridizes fuzzy AHP and goal programming (GP), namely the HGP model, was tested. Finally, the vehicle routing problem (VRP) for a case study was formulated, and it was tested using a hybrid genetic algorithm (HGA) which hybridizes the push forward insertion heuristic (PFIH), genetic algorithm (GA) and three local searches including 2-opt, insertion-move and interexchange-move. The results show that both the HGP and HGA can lead to select new suitable locations and to find the optimal set of transport routes for vehicles delivering infectious waste material. The novelty of the proposed methodologies, HGP, is the simultaneous combination of relevant factors that are difficult to interpret and cost factors in order to determine new suitable locations, and HGA can be applied to determine the transport routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation efficiently in this case.
Choosing locations for infectious waste disposal (IWD) is one of the most significant issues in hazardous waste management due to the risk imposed on the environment and human life. This risk can be the result of an undesirable location of IWD facilities. In this study a hybrid multi-criteria analysis (Hybrid MCA) model for solving the facility location-allocation (FLA) problem for IWD was developed by combining two objectives: total cost minimization and weight maximization. Based on an actual case of forty-seven hospitals and three candidate municipalities in the northeastern region of Thailand, first, the Fuzzy AHP and Fuzzy TOPSIS techniques were integrated to determine the closeness of the coefficient weights of each candidate municipality. After that, these weights were converted to weighting factors and then these factors were taken into the objective function of the FLA model. The results showed that the Hybrid MCA model can help decision makers to locate disposal centers, hospitals and incinerator size simultaneously. Besides that the model can be extended by incorporating additional selection criteria/objectives. Therefore, it is believed that it can also be useful for addressing other complex problems.
A new approach is applied in the process of measuring the efficiency of decision-making units (DMUs) through the cross-efficiency evaluation method. Ideal and Anti-Ideal models are generated to form a comprehensive method based on the cross-efficiency evaluation method. The two models are formulated and combined to the Data Envelopment Analysis using the CRITIC method. In a comparative analysis based on three numerical examples, the proposed approach can lead to achieving a more reliable result than one based on an individual method.
Abstract:Purpose: Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management.Design/methodology/approach: Case study, which involves forty hospitals and three candidate municipalities in sub-Northeastern Thailand, is divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and λ-interchange-move.
Findings:The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively.-853-Journal of Industrial Engineering and Management -https://doi.org/10.3926/jiem.2353 Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of criteria in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.