Among the heat exchangers (HE), the shell and tube type is being widely used in different applications like oil, chemical, and power plant Industries. The incorporation of segmental baffles (SB) improves the HE capacity from higher temperature fluid to lower temperature fluid. Nanofluids can be effectively used to enhance the heat transfer rate. In this study, numerical simulations have been carried out in a shell and tube heat exchanger (STHX). Among HE design methods, Tubular Exchanger Manufacturers Association (TEMA) standard is being used for better design by many researchers. In this paper, the computational fluid dynamics analysis was carried out with Al2O3, CuO, and SiO2 nanofluids amid 1, 3, and 5 vol. % with water emulsion to enhance the heat transfer coefficient of STHX. The nanofluid has been used in the cold fluid of the HE and on the other side hot water is used. From the results, it is noticed that with the increase of Nanofluids, the value of heat transfer coefficients is found to be increasing. The overall heat transfer coefficient has been enhanced for Al2O3, CuO, and SiO2 about 10.41%, 12.27%, and 9.56%, respectively, at 0.22 kg/s for the 5 vol. % addition. It is also depicted that the pressure drop is increasing with the incorporation of nanofluids.
In this study, Shell and tube heat exchanger (STHX) with 22% cut segmental baffles and helical baffles with 20°, 30°, 40°inclination angles are considered for three-dimensional CFD analysis using the ANSYS FLUENT tool to investigate the performance of STHX. in 40°HB with Al 2 O 3 nanofluid at 5% volume concentration are observed when compared to water as base fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.