Significance Nitrogen fixation is a process of conversion of atmospheric nitrogen to ammonia catalyzed by nitrogenase, which is quickly inactivated by oxygen. Cyanobacteria are a group of prokaryotes that perform oxygenic photosynthesis, and many cyanobacterial species have the ability to fix nitrogen. How nitrogen fixation is coordinated with oxygenic photosynthesis remains largely unknown. Here we report two transcriptional regulators, ChlR (chlorophyll regulator) and CnfR (cyanobacterial nitrogen fixation regulator), that activate the transcription of genes responsible for anaerobic chlorophyll biosynthesis and the nitrogen fixation genes, respectively, in response to low-oxygen conditions in Leptolyngbya boryana , a diazotrophic cyanobacterium lacking heterocysts.
The filamentous cyanobacterium Leptolyngbya boryana has the ability to fix nitrogen without any heterocysts under microoxic conditions. Previously, we identified the cnfR gene for a master transcriptional activator for nitrogen fixation (nif) genes in a 50-kb gene cluster containing nif and nif-related genes in L. boryana. We showed that CnfR activates the transcription of nif genes in response to low oxygen conditions, which allows the oxygen-vulnerable enzyme nitrogenase to function. However, the regulatory mechanism that underlies regulation by CnfR remains unknown. In this study, we identified a conserved cis-acting element that is recognized by CnfR. We established a reporter system in the non-diazotrophic cyanobacterium Synechocystis sp. PCC 6803 using luciferase genes (luxAB). Reporter analysis was performed with a series of truncated and modified upstream regulatory regions of nifB and nifP. The cis-element can be divided into nine motifs I-IX, and it is located 76 bp upstream of the transcriptional start sites of nifB and nifP. Six motifs of them are essential for transcriptional activation by CnfR. This cis-acting element is conserved in the upstream regions of nif genes in all diazotrophic cyanobacteria, including Anabaena and Cyanothece, thereby suggesting that the transcriptional regulation by CnfR is widespread in nitrogen-fixing cyanobacteria.
Since nitrogenase is extremely vulnerable to oxygen, aerobic or micro-aerobic nitrogen-fixing organisms need to create anaerobic microenvironments in the cells for diazotrophic growth, which would be one of the major barriers to express active nitrogenase in plants in efforts to create nitrogen-fixing plants. Numerous cyanobacteria are able to fix nitrogen with nitrogenase by coping with the endogenous oxygen production by photosynthesis. Understanding of the molecular mechanisms enabling to the coexistence of nitrogen fixation and photosynthesis in nonheterocystous cyanobacteria could offer valuable insights for the transfer of nitrogen fixation capacity into plants. We previously identified the cnfR gene encoding the master regulator for the nitrogen fixation (nif) gene cluster in the genome of a nonheterocystous cyanobacterium Leptolyngbya boryana, in addition to initial characterization of the nif gene cluster. Here we isolated nine mutants, in which the nif and nif-related genes were individually knocked out in L. boryana to investigate the individual functions of (1) accessory proteins (NifW, NifX/NafY, and NifZ) in the biosynthesis of nitrogenase metallocenters, (2) serine acetyltransferase (NifP) in cysteine supply for iron-sulfur clusters, (3) pyruvate formate lyase in anaerobic metabolism, and (4) NifT and HesAB proteins. ΔnifW, ΔnifXnafY, and ΔnifZ exhibited the most severe phenotype characterized by low nitrogenase activity (<10%) and loss of diazotrophic growth ability. The phenotypes of ΔnifX, ΔnafY, and ΔnifXnafY suggested that the functions of the homologous proteins NifX and NafY partially overlap. ΔnifP exhibited significantly slower diazotrophic growth than the wild type, with lower nitrogenase activity (22%). The other four mutants (ΔpflB, ΔnifT, ΔhesA, and ΔhesB) grew diazotrophically similar to the wild type. Western blot analysis revealed a high correlation between nitrogenase activity and NifD contents, suggesting that NifD is more susceptible to proteolytic degradation than NifK in L. boryana. The phenotype of the mutants lacking the accessory proteins was more severe than that observed in heterotrophic bacteria such as Azotobacter vinelandii, which suggests that the functions of NifW, NifX/NafY, and NifZ are critical for diazotrophic growth of oxygenic photosynthetic cells. L. boryana provides a promising model for studying the molecular mechanisms that produce active nitrogenase, to facilitate the creation of nitrogen-fixing plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.