Purpose We report the manufacture of particles containing a mixture of hydroxyapatite–argentum–titanium oxide (HAT), followed by attachment to nonwoven polyester fabrics to produce HAT-coated sheets (HATS) for use in masks. The purpose of the present study was to perform cellular, in vivo, and clinical studies to further examine the safety of HATS for use in masks to improve nasal allergy. Methods Reverse mutation tests for HAT were performed using five bacterial strains. A cellular toxicity test was performed using a Chinese hamster cell line incubated with the HATS extracts. Skin reactions after intradermal administration were examined in rabbits. Skin sensitization tests in guinea pigs were performed using the HATS extracts. HAT was administered to the nasal cavity and conjunctival sac of the rabbits. An oral administration study was performed in rats. Finally, a human skin patch test was performed using the HATS. Results Reverse mutation tests showed negative results. The cellular toxicity test showed that the HATS extract had moderate cytotoxicity. The intradermal skin reaction and skin sensitization tests were all negative. The administration of HAT to the nasal cavity and intraocular administration showed negative results. No toxicity was observed after oral administration of HAT powder up to a dose of 2000 mg/kg. Finally, the skin patch test result was negative. Conclusion Although HAT showed moderate cytotoxicity, in vivo results indicated that HAT is safe because it does not come in direct contact with cells in normal usage, and HATS is safe when used in masks.
Controlling mosquitoes is vital for counteracting the rising number of mosquito-borne illnesses. Vector control requires the implementation of various measures; however, current methods lack complete effectiveness, and new control agents or substances are urgently needed. Therefore, this study developed a nonwoven fabric sheet coated with hydroxyapatite-binding silver/titanium dioxide compound (hydroxyapatite-binding silver/titanium dioxide sheet [HATS])and evaluated its effectiveness on all stages of laboratory Aedes aegypti (Linnaeus); Diptera: Culicidae and Anopheles dirus (Peyton & Harrison); Diptera: Culicidae. We reared larvae with HATS and control sheets and assessed their mortality, emergence, and hatching rates. The submersion rates of engorged female mosquitoes in submerged HATS and control sheets were also compared. The HATS strongly affected mosquito development, resulting in high mortality rates (mean ± SE) of 99.66 ± 0.58% (L1–L2) and 91.11 ± 9.20% (L3–L4) for Ae. aegypti and 100% of both stages for An. dirus. In contrast, mosquitoes raised in the control sheet showed relatively high survival rates of 92.33 ± 3.21% (L1–L2) and 95.67 ± 0.58% (L3–L4) for Ae. aegypti and 86.07 ± 3.53% (L1–L2) and 92.01 ± 8.67% (L3–L4) for An. dirus. Submersion of engorged females was found in the HATS oviposition cup, leading to a decreased number of eggs and a low hatching rate compared to that of the control. Overall, HATS may be a useful new control method for Ae. aegypti and An. dirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.