Chlorinated disinfectants are widely used in hospitals, COVID-19 quarantine facilities, households, institutes, and public areas to combat the spread of the novel coronavirus as they are effective against viruses on various surfaces. Medical facilities have enhanced their routine disinfection of indoors, premises, and in-house sewage. Besides questioning the efficiency of these compounds in combating coronavirus, the impacts of these excessive disinfection efforts have not been discussed anywhere. The impacts of chlorine-based disinfectants on both environment and human health are reviewed in this paper. Chlorine in molecular and in compound forms is known to pose many health hazards. Hypochlorite addition to soil can increase chlorine/chloride concentration, which can be fatal to plant species if exposed. When chlorine compounds reach the sewer/drainage system and are exposed to aqueous media such as wastewater, many disinfection by-products (DBPs) can be formed depending on the concentrations of natural organic matter, inorganics, and anthropogenic pollutants present. Chlorination of hospital wastewater can also produce toxic drug-derived disinfection by-products. Many DBPs are carcinogenic to humans, and some of them are cytotoxic, genotoxic, and mutagenic. DBPs can be harmful to the flora and fauna of the receiving water body and may have adverse effects on microorganisms and plankton present in these ecosystems.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11356-021-18316-2.
Around the world, coastal groundwater is increasingly subject to seawater intrusion (SWI). The quality and characteristics of such waters differ from those of surface and groundwater. In the current study, trihalomethane (THM) formation under varying levels of SWI, natural organic matter (NOM), and chloride-to-bromide (Cl/Br) ratio was evaluated. Different levels of SWI were simulated by mixing deionized water with real seawater (RSW) collected from the Indian Ocean or synthetic seawater (SSW) by varying seawater volumes from 0% to 3%. Humic acid (0 to 5 mg/L) was added to represent NOM at concentrations mimicking natural levels of dissolved organic carbon. The chlorine demand of the simulated water samples was significantly correlated to SWI levels and NOM concentrations. THM concentration in SSW increased from 12.64 µg/L to 105.34 µg/L after 24 h and to 115.8 µg/L after 48 h for an increase from 0% to 3% volume of seawater. For water samples simulated with RSW, maximum THMs after 24 h were 119.2 µg/L, and after 48 h were 126.4 µg/L. An increase in NOM concentration in seawater-intruded water samples resulted in increasing THMs, especially tribromomethane. However, the increment in THMs at higher NOM concentration was lower compared to that at low NOM concentration. Chlorine demand was positively correlated only to tribromomethane. An increase in bromide concentration resulted in lower Cl/Br ratio and a concomitant increase in brominated THMs. The bromine substitution factor corresponding to increasing SWI of 0.25–3% decreased from 2.67 to 1.81 over a reaction time of 24 to 48 h, indicating a shift from TBM dominance to chlorinated THMs.
The multi-pathway cancer risk (CR) assessment of trihalomethanes (THM) involves considering exposure via ingestion, dermal contact, and inhalation. Inhalation occurs during showering due to the volatilization of THMs from chlorinated water to the air. When assessing inhalation risks, exposure models commonly assume that the initial THM concentration in the shower room is zero. However, this assumption is only valid in private shower rooms where single or infrequent showering events take place. It fails to account for continuous or successive showering events in shared showering facilities. To address this issue, we incorporated the accumulation of THM in the shower room air. We studied a community (population ≈ 20,000) comprising two types of residences with the same water supply: population A with private shower rooms, and population B with communal shower stalls. The total THM concentration in the water was 30.22 ± 14.45 µg L−1. For population A, the total CR was 58.5 × 10−6, including an inhalation risk of 1.11 × 10−6. However, for population B, the accumulation of THM in the shower stall air resulted in increased inhalation risk. By the tenth showering event, the inhalation risk was 2.2 × 10−6, and the equivalent total CR was 59.64 × 10−6. We found that the CR significantly increased with increasing shower duration. Nevertheless, introducing a ventilation rate of 5 L s−1 in the shower stall reduced the inhalation CR from 1.2 × 10−6 to 7.9 × 10−7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.