The systematic comparison of genomic sequences from different organisms represents a central focus of contemporary genome analysis. Comparative analyses of vertebrate sequences can identify coding and conserved non-coding regions, including regulatory elements, and provide insight into the forces that have rendered modern-day genomes. As a complement to whole-genome sequencing efforts, we are sequencing and comparing targeted genomic regions in multiple, evolutionarily diverse vertebrates. Here we report the generation and analysis of over 12 megabases (Mb) of sequence from 12 species, all derived from the genomic region orthologous to a segment of about 1.8 Mb on human chromosome 7 containing ten genes, including the gene mutated in cystic fibrosis. These sequences show conservation reflecting both functional constraints and the neutral mutational events that shaped this genomic region. In particular, we identify substantial numbers of conserved non-coding segments beyond those previously identified experimentally, most of which are not detectable by pair-wise sequence comparisons alone. Analysis of transposable element insertions highlights the variation in genome dynamics among these species and confirms the placement of rodents as a sister group to the primates.
PURPOSE. This study examined if the delta-opioid (d-opioid) receptor agonist, SNC-121, can improve retinal function and retinal ganglion cell (RGC) survival during glaucomatous injury in a chronic ocular hypertensive rat model. METHODS.IOP was raised in brown Norway rats by injecting hypertonic saline into the limbal venous system. Rats were treated with 1 mg/kg SNC-121 (intraperitoneally [IP]) once daily for 7 days. Pattern-electroretinograms (PERGs) were obtained in response to contrast reversal of patterned visual stimuli. RGCs were visualized by fluorogold retrograde labeling. Expression of TNF-a and p38 mitogen-activated protein (MAP) kinase was measured by immunohistochemistry and Western blotting.RESULTS. PERG amplitudes in ocular hypertensive eyes were significantly reduced (14.3 6 0.60 lvolts) when compared with healthy eyes (18.0 6 0.62 lvolts). PERG loss in hypertensive eyes was inhibited by SNC-121 treatment (17.20 6 0.1.3 lvolts; P < 0.05). There was a 29% loss of RGCs in the ocular hypertensive eye, which was inhibited in the presence of SNC-121. TNF-a production and activation of p38 MAP kinase in retinal sections and optic nerve samples were upregulated in ocular hypertensive eyes and inhibited in the presence of SNC-121. Furthermore, TNF-a induced increase in p38 MAP kinase activation in astrocytes was inhibited in the presence of SNC-121.CONCLUSIONS. These data provide evidence that activation of dopioid receptors inhibited the loss of PERG amplitudes and rate of RGC loss during glaucomatous injury. Mechanistic data provided clues that TNF-a is mainly produced from glial cells and activates p38 MAP kinase, which was significantly inhibited by SNC-121 treatment. Overall, data indicate that enhancement of d-opioidergic activity in the eye may provide retina neuroprotection against glaucoma. (Invest Ophthalmol Vis Sci.
Antibiotics are among the most important discoveries of the 20th century, having saved millions of lives from infectious diseases. Microbes have developed acquired antimicrobial resistance (AMR) to many drugs due to high selection pressure from increasing use and misuse of antibiotics over the years. The transmission and acquisition of AMR occur primarily via a human–human interface both within and outside of healthcare facilities. A huge number of interdependent factors related to healthcare and agriculture govern the development of AMR through various drug-resistance mechanisms. The emergence and spread of AMR from the unrestricted use of antimicrobials in livestock feed has been a major contributing factor. The prevalence of antimicrobial-resistant bacteria has attained an incongruous level worldwide and threatens global public health as a silent pandemic, necessitating urgent intervention. Therapeutic options of infections caused by antimicrobial-resistant bacteria are limited, resulting in significant morbidity and mortality with high financial impact. The paucity in discovery and supply of new novel antimicrobials to treat life-threatening infections by resistant pathogens stands in sharp contrast to demand. Immediate interventions to contain AMR include surveillance and monitoring, minimizing over-the-counter antibiotics and antibiotics in food animals, access to quality and affordable medicines, vaccines and diagnostics, and enforcement of legislation. An orchestrated collaborative action within and between multiple national and international organizations is required urgently, otherwise, a postantibiotic era can be a more real possibility than an apocalyptic fantasy for the 21st century. This narrative review highlights on this basis, mechanisms and factors in microbial resistance, and key strategies to combat antimicrobial resistance.
Evidence is provided that SNC-121 attenuated TNF-α-induced MMP-2 secretion from ONH astrocytes. Data also supported the idea that p38 MAP kinase and NF-κB played central roles in TNF-α-induced MMP-2 secretion, and both were negatively regulated by SNC-121.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.