Abstract. Epithelial-mesenchymal transition (EMT) refers to critical events occasionally observed during tumor progression, including invasion and metastasis, by which cancer cells acquire a fibroblast-like phenotype. Since the stromal cellderived factor-1 (SDF-1)/CXCR4 system can facilitate lymph node metastasis in oral squamous cell carcinoma (SCC), we have explored the possibility that this system might be involved in EMT. Oral SCC cells, B88 and HNt, which have functional CXCR4 and lymph node metastatic potential, were found to lose their epithelial cell morphology due to SDF-1. In this context, the downregulation of epithelial markers, cytokeratin, E-cadherin and ß-catenin, and the upregulation of mesenchymal marker, vimentin and snail were detected. Furthermore, upregulation of vimentin by treatment with SDF-1 was impaired by phosphatidylinositol 3 kinase (PI3K) inhibitor Wortmannin, but not by mitogenactivated protein kinase/extracellular signal-regulated kinase inhibitor U0126. In the type I collagen embedding culture, SDF-1-treated B88 cells formed protruding extensions, but the effect was impaired by treatment with Wortmannin. These results suggested that EMT induced by the SDF-1/ CXCR4 system might be involved in the lymph node metastasis of oral SCCs via activation of PI3K-Akt/PKB pathway.
We have previously shown that a stromal cell -derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of lymph node metastasis, but not in that of distant metastasis, in oral squamous cell carcinoma (SCC). In this study, we investigated the role of the autocrine SDF-1/CXCR4 system, with a focus on distant metastasis in oral SCC cells. The immunohistochemical staining of SDF-1 and CXCR4 using primary oral SCCs and metastatic lymph nodes showed a significantly higher number of SDF-1 -positive cases among the metastatic lymph nodes than among the primary oral SCCs, which was associated with a poor survival rate among those of the former group. The forced expression of SDF-1 in B88 cells, which exhibit functional CXCR4 and lymph node metastatic potential (i.e., the autocrine SDF-1/CXCR4 system), conferred enhanced cell motility and anchorage-independent growth potential onto the cells. Orthotopic inoculation of the transfectant into nude mice was associated with an increase in the number of metastatic lymph nodes and more aggressive metastatic foci in the lymph nodes. Furthermore, the SDF-1 transfectant (i.e., the autocrine SDF-1/CXCR4 system) exhibited dramatic metastasis to the lung after i.v. inoculation, whereas the mock transfectant (i.e., the paracrine SDF-1/CXCR4 system) did not. Under the present conditions, AMD3100, a CXCR4 antagonist, significantly inhibited the lung metastasis of the SDF-1 transfectant, ameliorated body weight loss, and improved the survival rate of tumor-bearing nude mice. These results suggested that, in cases of oral SCC, the paracrine SDF-1/CXCR4 system potentiates lymph node metastasis, but distant metastasis might require the autocrine SDF-1/CXCR4 system. (Mol Cancer Res 2007;5(7):685 -94)
We examined the role of the hepatocyte growth factor (HGF)/c-met system on invasion and metastasis of oral squamous cell carcinoma (SCC) cells. In monolayer culture, exogenous HGF marginally affected the growth of oral SCC cells (BHY, HN, IH) and human gingival epithelial cells (GE). In type I collagen matrix, however, HGF significantly enhanced the invasive growth of the cancer cells (p < 0.05). We detected the expression of c-met (HGF receptor) mRNA in all of the cancer cells, but not in human gingival fibroblasts (GF). Oral SCC cells did not secret HGF protein into the medium, but GF secreted a large amount of HGF protein (15 ng/ml). Furthermore, HGF markedly enhanced the migration of cancer cells in a Transwell invasion chamber. Then, we examined the serum levels of HGF in oral SCC patients, or HGF concentrations in oral cancer tissues. Serum levels of HGF in the patients were significantly higher than those in healthy volunteers (p < 0.05). After initial treatment, all of the tumor-free survivors showed a marked decline in the serum HGF levels. Furthermore, HGF concentrations in metastatic cancer tissues were significantly higher than those of nonmetastatic cancer tissues and normal gingiva (p < 0.01). These results suggest that HGF plays an important role in invasion and metastasis of oral SCC cells as a paracrine factor, and an elevated HGF level in the cancer tissue can be a predictive marker for metastasis formation in patients with oral SCC. © 2001 Wiley-Liss, Inc. Key words: oral SCC; HGF; c-met; metastasisOral SCCs are characterized by a high degree of local invasion and a high rate of metastases to cervical lymph nodes, but a low rate of metastases to distant organs. Moreover, oral SCC frequently show local recurrence after initial treatment, probably due to micro-invasion or micro-metastasis of the tumor cells at the primary site. We recently reported that oral SCC cells produced a large amount of matrix-degrading enzymes and that the net activity of MMP2 (active-MMP2/TIMP2) produced by cancer cells contributes to lymph-node metastasis in a nude-mouse orthotopic inoculation model. 1 We also noted that cancer cells in the peripheral blood of patients with oral SCC were frequently detected by RT-PCR for cytokeratin 20 mRNA, and that there was no clear relationship between the hematogenous cancer cells and the metastasis. 2 Furthermore, by microdissection zymography, we demonstrated that active MMP2 in cancer cell nests could be a predictive marker for metastasis formation in patients with oral SCC. 3 The precise molecular mechanisms of invasion and metastasis of oral cancer, however, especially the interaction between cancer cells and host cells, are still unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.