Drug eluting coatings that can direct the host tissue response to implanted medical devices have the potential to ameliorate both the medical and financial burden of complications from implantation. However, because many drugs useful in this arena are biologic in nature, a paucity of delivery strategies for biologics, including growth factors, currently limits the control that can be exerted on the implantation environment. Layer-by-Layer (LbL) polyelectrolyte multilayer films are highly attractive as ultrathin biologic reservoirs, due to conformal coating of difficult geometries, aqueous processing likely to preserve fragile protein function, and tenability of incorporation and release profiles. Herein, we describe the first LbL films capable of microgram-scale release of the biologic Bone Morphogenetic Protein 2 (BMP-2), which is capable of directing the host tissue response to create bone from native progenitor cells. Ten micrograms of BMP-2 are released over a period of two weeks in vitro; less than 1% is released in the first 3 hours (compared with commercial collagen matrices which can release up to 60% of BMP-2, too quickly to induce differentiation). BMP-2 released from LbL films retains its ability to induce bone differentiation in MC3T3 E1S4 preosteoblasts, as measured by induction of alkaline phosphatase and stains for calcium (via Alizarin Red) and calcium matrix (via Von Kossa). In vivo, BMP-2 film coated scaffolds were compared with film coated scaffolds lacking BMP-2. BMP-2 coatings implanted intramuscularly were able to initiate host progenitor cells to differentiate into bone, which matured and expanded from four to nine weeks as measured by MicroCT and histology. Such LbL films represent new steps towards controlling and tuning host response to implanted medical devices, which may ultimately increase the success of implanted devices, provide alternative new approaches toward bone wound healing, and lay the foundation for development of a multi-therapeutic release coating.
A promising strategy to accelerate joint implant integration and reduce recovery time and failure rates is to deliver a combination of certain growth factors to the integration site. There is a need to control the quantity of growth factors delivered at different times during the healing process to maximize efficacy. Polyelectrolyte multilayer (PEM) films, built using the layer-by-layer (LbL) technique, are attractive for releasing controlled amounts of potent growth factors over a sustained period. Here, we present PEM films that sequester physiological amounts of osteogenic rhBMP-2 (recombinant human bone morphogenetic protein - 2) and angiogenic rhVEGF165 (recombinant human vascular endothelial growth factor) in different ratios in a degradable [poly(β-amino ester)/polyanion/growth factor/ polyanion] LbL tetralayer repeat architecture where the biologic load scaled linearly with the number of tetralayers. No burst release of either growth factor was observed as the films degraded. The release of rhBMP-2 was sustained over a period of 2 weeks, while rhVEGF165 eluted from the film over the first 8 days. Both growth factors retained their efficacy, as quantified with relevant in vitro assays. rhBMP-2 initiated a dose dependent differentiation cascade in MC3T3-E1S4 pre-osteoblasts while rhVEGF165 upregulated HUVEC proliferation, and accelerated closure of a scratch in HUVEC cell cultures in a dose dependent manner. In vivo, the mineral density of ectopic bone formed de novo by rhBMP-2/rhVEGF165 PEM films was approximately 33% higher than when only rhBMP-2 was introduced, with a higher trabecular thickness, which would indicate a decrease in the risk of osteoporotic fracture. Bone formed throughout the scaffold when both growth factors were released, which suggests more complete remodeling due to an increased local vascular network. This study demonstrates a promising approach to delivering precise doses of multiple growth factors for a variety of implant applications where control over spatial and temporal release profile of the biologic is desired.
Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.