The objective of this work is to control the constant distillate composition of batch distillation column xD. A new correlation developed involved the instant reflux ratio value R with a composition of the remaining mixture in the bottom pot (boiler) xB. Also adding the dynamic time as ahead time (+dt) to the control algorithm to increase the R to anticipate the changes in xD. +dt was calculated using an electroconductive tracer that was injected both in the bottom pot and in the top tray to estimate the upward and the downward dynamic time. The proposed correlation was successfully applied as a control strategy on a glass batch distillation pilot plant that has 5 cm diameter, 1 m long, eight sieve trays, and Methanol–Water mixture as a system. The real-time experimental runs of the suggested control algorithm applied by manipulating the reflux stream that affects the changes that happened in the top composition product to keep it constant. The proposed procedure shows a quick and stable response for distillate product composition during the operating time that minimizes and saves the energy supplied to the boiler. Moreover, the system gives a straight, smooth linear constant distillate product even in case of disturbing the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.