Indoor wireless localization using Bluetooth Low Energy (BLE) beacons has attracted considerable attention after the release of the BLE protocol. In this paper, we propose an algorithm that uses the combination of channel-separate polynomial regression model (PRM), channel-separate fingerprinting (FP), outlier detection and extended Kalman filtering (EKF) for smartphone-based indoor localization with BLE beacons. The proposed algorithm uses FP and PRM to estimate the target’s location and the distances between the target and BLE beacons respectively. We compare the performance of distance estimation that uses separate PRM for three advertisement channels (i.e., the separate strategy) with that use an aggregate PRM generated through the combination of information from all channels (i.e., the aggregate strategy). The performance of FP-based location estimation results of the separate strategy and the aggregate strategy are also compared. It was found that the separate strategy can provide higher accuracy; thus, it is preferred to adopt PRM and FP for each BLE advertisement channel separately. Furthermore, to enhance the robustness of the algorithm, a two-level outlier detection mechanism is designed. Distance and location estimates obtained from PRM and FP are passed to the first outlier detection to generate improved distance estimates for the EKF. After the EKF process, the second outlier detection algorithm based on statistical testing is further performed to remove the outliers. The proposed algorithm was evaluated by various field experiments. Results show that the proposed algorithm achieved the accuracy of <2.56 m at 90% of the time with dense deployment of BLE beacons (1 beacon per 9 m), which performs 35.82% better than <3.99 m from the Propagation Model (PM) + EKF algorithm and 15.77% more accurate than <3.04 m from the FP + EKF algorithm. With sparse deployment (1 beacon per 18 m), the proposed algorithm achieves the accuracies of <3.88 m at 90% of the time, which performs 49.58% more accurate than <8.00 m from the PM + EKF algorithm and 21.41% better than <4.94 m from the FP + EKF algorithm. Therefore, the proposed algorithm is especially useful to improve the localization accuracy in environments with sparse beacon deployment.
The Global Positioning System (GPS) is a worldwide navigation system that requires a clear line of sight to the orbiting satellites. For land vehicle navigation, a clear line of sight cannot be maintained all the time as the vehicle can travel through tunnels, under bridges, forest canopies or within urban canyons. In such situations, the augmentation of GPS with other systems is necessary for continuous navigation. Inertial sensors can determine the motion of a body with respect to an inertial frame of reference. Traditionally, inertial systems are bulky, expensive and controlled by government regulations. Micro-electro mechanical systems (MEMS) inertial sensors are compact, small, inexpensive and most importantly, not controlled by governmental agencies due to their large error characteristics. Consequently, these sensors are the perfect candidate for integrated civilian navigation applications with GPS. However, these sensors need to be calibrated to remove the major part of the deterministic sensor errors before they can be used to accurately and reliably bridge GPS signal gaps. A new multi-position calibration method was designed for MEMS of high to medium quality. The method does not require special aligned mounting and has been adapted to compensate for the primary sensor errors, including the important scale factor and non-orthogonality errors of the gyroscopes. A turntable was used to provide a strong rotation rate signal as reference for the estimation of these errors. Two different quality MEMS IMUs were tested in the study. The calibration results were first compared directly to those from traditional calibration methods, e.g. six-position and rate test. Then the calibrated parameters were applied in three datasets of GPS/INS field tests to evaluate their accuracy indirectly by comparing the position drifts during short-term GPS signal outages.
Navigation involves the integration of methodologies and systems for estimating the time varying position and attitude of moving objects. Inertial Navigation Systems (INS) and the Global Positioning System (GPS) are among the most widely used navigation systems. The use of cost effective MEMS based inertial sensors has made GPS/INS integrated navigation systems more affordable. However MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable navigation results. Moreover the performance characteristics of these sensors are highly dependent on the environmental conditions such as temperature variations. Hence there is a need for the development of accurate, reliable and efficient thermal models to reduce the effect of these errors that can potentially degrade the system performance. In this paper, the Allan variance method is used to characterize the noise in the MEMS sensors. A six-position calibration method is applied to estimate the deterministic sensor errors such as bias, scale factor, and non-orthogonality. An efficient thermal variation model is proposed and the effectiveness of the proposed calibration methods is investigated through a kinematic van test using integrated GPS and MEMS-based inertial measurement unit (IMU).
Context-awareness is an interesting topic in mobile navigation scenarios where the context of the application is highly dynamic. Using context-aware computing, navigation services consider the situation of user, not only in the design process, but in real time while the device is in use. The basic idea is that mobile navigation services can provide different services based on different contexts—where contexts are related to the user's activity and the device placement. Context-aware systems are concerned with the following challenges which are addressed in this paper: context acquisition, context understanding, and context-aware application adaptation. The proposed approach in this paper is using low-cost sensors in a multi-level fusion scheme to improve the accuracy and robustness of context-aware navigation system. The experimental results demonstrate the capabilities of the context-aware Personal Navigation Systems (PNS) for outdoor personal navigation using a smartphone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.