In recent years, perovskite solar cells (PSCs), often referred to as the third generation, have rapidly proliferated. Their most prominent deficiencies are their low efficiency and poor stability. To enhance their productivity, a combination of silicon and perovskite is employed. Here, we present a 3D simulation analysis of various electrical and optical properties of PSCs using the SILVACO simulation software. Using the inverted planar method with inorganic transport materials and the proper selection of anti-reflective coatings with a back contact layer increases the efficiency of PSCs to 28.064%, and enhances their stability without using silicone composites. Several materials, including CaF2, SiO2, and Al2O3, with various thicknesses have been employed to investigate the effect of anti-reflective coatings, and to improve the efficiency of the simulated PSC. The best thickness of the absorbent layer is 500 nm, using a CaF2 anti-reflective coating with an optimal thickness of 110 nm. A polymer composition of Spiro-OMeTAD and inorganic materials Cu2O and NiOx was used as the hole transport material (HTM) and inorganic ZnO was employed as the electron transport material (ETM) to optimize the solar cell efficiency, and an optimized thickness was considered for these materials. Yields of 29.261, 28.064 and 27.325% were obtained for Spiro-OMeTAD/ZnO, Cu2O/ZnO and NiOx/ZnO, respectively. Thus, Spiro-OMeTAD yields the highest efficiency. This material is highly expensive with a complex synthesis and high degradability. We proposed to employ Cu2O to alleviate these problems; however, this reduces the efficiency by 1.197%. As a graphene connector has high flexibility, reduces cell weight, and is cheaper and more accessible compared to other metals, it was regarded as an optimal alternative. The simulation results indicate that using the inverted planar method with inorganic transport materials for graphene-based PSCs is highly promising.
This study proposes a modular multilevel inverter for low‐voltage applications, including ac‐coupled renewables and energy storage systems. These inverters require many switches and gate drivers in their structures, which complicates the control system, reduces efficiency, and increases costs. This study introduces a new modular multilevel inverter that can produce five levels of positive voltage using only six power switches and five DC voltage sources. The basic unit is composed of a single‐ and double‐source (SDS) unit. SDS reduces the number of power electronic components, such as the insulated gate bipolar transistors, freewheeling diodes, gate driver circuits, dc voltage sources, and blocking voltage by switches. The proposed topology can boost the number of output voltage levels and decrease the number of switching devices and voltage stress using some combinations of basic submodules. The performance of the proposed 11‐level single‐phase inverter is compared with that of the conventional structures and recent symmetric topologies considering the number of switches, cost, and efficiency. The waveform quality and both the voltage and current harmonic characteristics were determined in accordance with IEEE 519–2014. Finally, an 11‐level prototype was constructed to validate the theoretical analysis, feasibility, and effectiveness of the proposed inverter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.