It is of a great importance in modern agriculture to study fast, automatic, inexpensive and accurate method of diagnosing plant diseasesTherefore, timely and accurately diagnosis of the disease in the fields is one of the most important factors in dealing with plant diseases. For this reason, in the present study, the image processing method study, has been examined for diagnosing the two important diseases of rice and tomato, brown spots and leaf blasts. In this study, firstly the data section is treated using improved k-means segmentation, after preprocessing. Secondly, comprehensive features are extracted and the disease areas are demarcated. An improved genetic algorithm is used in the feature selection step. Finally, images are categorized using the k-nearest neighbor’s algorithm (k-NN) classifier. The accuracy of the proposed method for the rice data set is 99.12 and for the tomato data set is 97.29, which shows a very good performance compared to other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.