Despite impressive progress, more than 50% of patients treated with CD19-targeting chimeric antigen receptor T cells (CAR19) experience progressive disease. Ten of 16 patients with large B cell lymphoma (LBCL) with progressive disease after CAR19 treatment had absent or low CD19. Lower surface CD19 density pretreatment was associated with progressive disease. To prevent relapse with CD19− or CD19lo disease, we tested a bispecific CAR targeting CD19 and/or CD22 (CD19-22.BB.z-CAR) in a phase I clinical trial (NCT03233854) of adults with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) and LBCL. The primary end points were manufacturing feasibility and safety with a secondary efficacy end point. Primary end points were met; 97% of products met protocol-specified dose and no dose-limiting toxicities occurred during dose escalation. In B-ALL (n = 17), 100% of patients responded with 88% minimal residual disease-negative complete remission (CR); in LBCL (n = 21), 62% of patients responded with 29% CR. Relapses were CD19−/lo in 50% (5 out of 10) of patients with B-ALL and 29% (4 out of 14) of patients with LBCL but were not associated with CD22−/lo disease. CD19/22-CAR products demonstrated reduced cytokine production when stimulated with CD22 versus CD19. Our results further implicate antigen loss as a major cause of CAR T cell resistance, highlight the challenge of engineering multi-specific CAR T cells with equivalent potency across targets and identify cytokine production as an important quality indicator for CAR T cell potency.
PURPOSE Although the majority of patients with relapsed or refractory large B-cell lymphoma respond to axicabtagene ciloleucel (axi-cel), only a minority of patients have durable remissions. This prospective multicenter study explored the prognostic value of circulating tumor DNA (ctDNA) before and after standard-of-care axi-cel for predicting patient outcomes. METHODS Lymphoma-specific variable, diversity, and joining gene segments (VDJ) clonotype ctDNA sequences were frequently monitored via next-generation sequencing from the time of starting lymphodepleting chemotherapy until progression or 1 year after axi-cel infusion. We assessed the prognostic value of ctDNA to predict outcomes and axi-cel–related toxicity. RESULTS A tumor clonotype was successfully detected in 69 of 72 (96%) enrolled patients. Higher pretreatment ctDNA concentrations were associated with progression after axi-cel infusion and developing cytokine release syndrome and/or immune effector cell–associated neurotoxicity syndrome. Twenty-three of 33 (70%) durably responding patients versus 4 of 31 (13%) progressing patients demonstrated nondetectable ctDNA 1 week after axi-cel infusion ( P < .0001). At day 28, patients with detectable ctDNA compared with those with undetectable ctDNA had a median progression-free survival and OS of 3 months versus not reached ( P < .0001) and 19 months versus not reached ( P = .0080), respectively. In patients with a radiographic partial response or stable disease on day 28, 1 of 10 patients with concurrently undetectable ctDNA relapsed; by contrast, 15 of 17 patients with concurrently detectable ctDNA relapsed ( P = .0001). ctDNA was detected at or before radiographic relapse in 29 of 30 (94%) patients. All durably responding patients had undetectable ctDNA at or before 3 months after axi-cel infusion. CONCLUSION Noninvasive ctDNA assessments can risk stratify and predict outcomes of patients undergoing axi-cel for the treatment of large B-cell lymphoma. These results provide a rationale for designing ctDNA-based risk-adaptive chimeric antigen receptor T-cell clinical trials.
HLA-haploidentical hematopoietic cell transplantation (Haplo-HCT) using posttransplantation cyclophosphamide (PT-Cy) has improved donor availability. However, a matched sibling donor (MSD) is still considered the optimal donor. Using the Center for International Blood and Marrow Transplant Research database, we compared outcomes after Haplo-HCT vs MSD in patients with acute myeloid leukemia (AML) in first complete remission (CR1). Data from 1205 adult CR1 AML patients (2008-2015) were analyzed. A total of 336 patients underwent PT-Cy–based Haplo-HCT and 869 underwent MSD using calcineurin inhibitor–based graft-versus-host disease (GVHD) prophylaxis. The Haplo-HCT group included more reduced-intensity conditioning (65% vs 30%) and bone marrow grafts (62% vs 7%), consistent with current practice. In multivariable analysis, Haplo-HCT and MSD groups were not different with regard to overall survival (P = .15), leukemia-free survival (P = .50), nonrelapse mortality (P = .16), relapse (P = .90), or grade II-IV acute GVHD (P = .98). However, the Haplo-HCT group had a significantly lower rate of chronic GVHD (hazard ratio, 0.38; 95% confidence interval, 0.30-0.48; P < .001). Results of subgroup analyses by conditioning intensity and graft source suggested that the reduced incidence of chronic GVHD in Haplo-HCT is not limited to a specific graft source or conditioning intensity. Center effect and minimal residual disease–donor type interaction were not predictors of outcome. Our results indicate a lower rate of chronic GVHD after PT-Cy–based Haplo-HCT vs MSD using calcineurin inhibitor–based GVHD prophylaxis, but similar other outcomes, in patients with AML in CR1. Haplo-HCT is a viable alternative to MSD in these patients.
Bortezomib (V), lenalidomide (R), cyclophosphamide (C) and dexamethasone (D) are components of the most commonly used modern doublet (RD, VD) or triplet (VRD, CVD) initial induction regimens prior to autologous hematopoietic cell transplantation (AHCT) for multiple myeloma (MM) in the US. In this study we evaluated 693 patients receiving “upfront” AHCT after initial induction therapy with modern doublet or triplet regimens using data reported to the Center for International Blood and Marrow Transplant Research from 2008–2013. Analysis was limited to those receiving a single AHCT after one line of induction therapy within 12 months from treatment initiation for MM. In multivariate analysis, progression-free (PFS) and overall survival were similar irrespective of induction regimen. However high risk cytogenetics and non-receipt of post-transplant maintenance/consolidation therapy were associated with higher risk of relapse. Patients receiving post-transplant therapy had significantly improved 3-year PFS vs. no post-transplant therapy (55% vs. 39%, p=0.0001). This benefit was most evident in patients not achieving at least CR post-AHCT (p=0.005). In patients receiving upfront AHCT, the choice of induction regimen (doublet or triplet therapies) appears to be of lower impact than use of post-transplant therapy.
Eukaryotic initiation factor 2A is a single polypeptide that acts to negatively regulate IRES-mediated translation during normal cellular conditions. We have found that eIF2A (encoded by YGR054w) abundance is reduced at both the mRNA and protein level during 6% ethanol stress (or 37°C heat shock) under conditions that mimic the diauxic shift in the yeast Saccharomyces cerevisiae. Furthermore, eIF2A protein is posttranslationally modified during ethanol stress. Unlike ethanol and heat shock stress, H2O2 and sorbitol treatment induce the loss of eIF2A mRNA, but not protein and without protein modification. To investigate the mechanism of eIF2A function we employed immunoprecipitation-mass spectrometry and identified an interaction between eIF2A and eEF1A. The interaction between eIF2A and eEF1A increases during ethanol stress, which correlates with an increase in IRES-mediated translation from the URE2 IRES element. These data suggest that eIF2A acts as a switch to regulate IRES-mediated translation, and eEF1A may be an important mediator of translational activation during ethanol stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.