CD36 is a multifunctional protein that enhances cellular fatty acid (FA) uptake, a key step in energy metabolism, and its dysregulation in multiple tissue sites is central to obesity-linked diabetes, a risk factor for atherosclerosis. Although CD36 has been implicated in FA uptake in a correlative way, the molecular mechanisms are not known. Their elucidation in cells is confounded by receptor-mediated uptake of low-density lipoprotein by CD36 and the competitive and/or contributive effects of other proteins involved in FA transport and metabolism, which include caveolin(s), fatty acid transport protein (FATP), intracellular fatty acid binding protein, and enzymes involved in the conversion of FAs to esters. Here we utilized a simpler cellular system (HEK cells), which lack caveolin-1, CD36, and FATP and metabolize FAs slowly compared to the time frame of transmembrane FA movement. Our previous studies of HEK cells showed that caveolin-1 affects FA binding and translocation across the plasma membrane and but not FA esterification [Simard, J. R., et al. (2010) J. Lipid Res. 51 (5), 914-922]. Our key new finding is that CD36 accelerates FA uptake and extensive incorporation into triglycerides, a process that is slower (minutes) than transmembrane movement (seconds). Real-time fluorescence measurements showed that the rates of binding and transport of oleic acid into cells with and without CD36 were not different. Thus, CD36 enhances intracellular metabolism, i.e., esterification, and thereby increases the rate of FA uptake without catalyzing the translocation of FA across the plasma membrane, suggesting that CD36 is central to FA uptake via its effects on intracellular metabolism.
The mechanism(s) of fatty acid uptake by liver cells is not fully understood. We applied new approaches to address long-standing controversies of fatty acid uptake and to distinguish diffusion and protein-based mechanisms. Using HepG2 cells containing an entrapped pH-sensing fluorescence dye, we showed that the addition of oleate (unbound or bound to cyclodextrin) to the external buffer caused a rapid (seconds) and dose-dependent decrease in intracellular pH (pH(in)), indicating diffusion of fatty acids across the plasma membrane. pH(in) returned to its initial value with a time course (in min) that paralleled the metabolism of radiolabeled oleate. Preincubation of cells with the inhibitors phloretin or triacsin C had no effect on the rapid pH(in) drop after the addition of oleate but greatly suppressed pH(in) recovery. Using radiolabeled oleate, we showed that its esterification was almost completely inhibited by phloretin or triacsin C, supporting the correlation between pH(in) recovery and metabolism. We then used a dual-fluorescence assay to study the interaction between HepG2 cells and cis-parinaric acid (PA), a naturally fluorescent but slowly metabolized fatty acid. The fluorescence of PA increased rapidly upon its addition to cells, indicating rapid binding to the plasma membrane; pH(in) decreased rapidly and simultaneously but did not recover within 5 min. Phloretin had no effect on the PA-mediated pH(in) drop or its slow recovery but decreased the absolute fluorescence of membrane-bound PA. Our results show that natural fatty acids rapidly bind to, and diffuse through, the plasma membrane without hindrance by metabolic inhibitors or by an inhibitor of putative membrane-bound fatty acid transporters.
Periodontal disease (PD) is a highly complex disease involving many factors; however, two principal facets central to initiation and progression of the majority of PD are the composition of the microbes in the sub-gingival plaque, and the host immune response to these organisms. Numerous studies point to the complexity of PD, and to the fact that despite innate and adaptive immune activation, and resultant inflammation, our immune response fails to cure disease. Stunning new findings have begun to clarify several complexities of the host-pathogen interaction of PD pointing to key roles for microbial dysboisis and immune imbalance in the pathogenesis of disease. Furthermore, these investigations have identified novel translational opportunities to intercede in PD treatment. In this review we will highlight a select few recent findings in innate and adaptive immunity, and host pathogen interactions of PD at a micro-environmental level that may have profound impact on PD progression.
SUMMARY Periodontal diseases are chronic oral inflammatory diseases that are polymicrobial in nature. The presence of specific bacteria in subgingival plaque such as Porphyromonas gingivalis is associated with microbial dysbiosis and modulation of host immune response. Bacteria-elicited innate immune activation and inflammation are key elements implicated in the destruction of soft and hard tissues supporting the teeth. Liver X receptors (LXRs) are nuclear hormone receptors with important function in lipid homeostasis, inflammation, and host response to infection; however, their contribution to chronic inflammatory diseases such as periodontal disease is not understood. The aim of this study was to define the contribution of LXRs in the development of immune response to P. gingivalis and to assess the roles LXRs play in infection-elicited oral bone loss. Employing macrophages, we observed that P. gingivalis challenge led to reduced LXRα and LXRβ gene expression compared to that observed with unchallenged wild type cells. Myeloid differentiation primary response gene 88 (MyD88)-independent, TIR-domain-containing adapter-inducing interferon-β (TRIF)-dependent signaling affected P. gingivalis-mediated reduction in LXRα expression, while neither pathway influenced the P. gingivalis effect on LXRβ expression. Employing LXR agonist and mice deficient in LXRs, we observed functional effects of LXRs in the development of P. gingivalis-elicited cytokine response at the level of the macrophage, and participation of LXRs in P. gingivalis-elicited oral bone loss. These findings identify novel importance for LXRs in the pathogenesis of P. gingivalis infection-elicited inflammation and oral bone loss.
Introduction-Porphyromonas gingivalis is a periodontopathic bacterium closely associated with generalized aggressive periodontal disease. Pattern recognition receptors (PRRs) participate in host response to this organism. It is likely that PRRs not previously recognized as part of the host response to P. gingivalis also participate in host response to this organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.