Prompt membrane permeabilization is a requisite for liposomes designed for local stimuli-induced intravascular release of therapeutic payloads. Incorporation of a small amount (i.e. 5 molar percent) of an unsaturated phospholipid, such as dioleoylphosphatidylcholine (DOPC), accelerated near infrared (NIR) light-triggered release in porphyrin-phospholipid (PoP) liposomes by an order of magnitude. In physiological conditions in vitro, 90% of the loaded drug could be released in a minute with NIR irradiation, while liposomes maintained serum stability in the absence of NIR irradiation. This enabled rapid laser-induced drug release using remarkably low amounts of PoP (i.e. 0.3 molar percent). Light-triggered drug release occurred concomitantly with DOPC and cholesterol oxidation, as detected by mass spectrometry. In the presence of an oxygen scavenger or an antioxidant, light-triggered drug release was inhibited, suggesting the light triggered release mechanism was caused by singlet oxygen mediated oxidization of unsaturated lipids. Despite the irreversible modification of lipid composition, DOPC-containing PoP liposome permeabilization was transient. Human pancreatic xenograft growth in mice was significantly delayed with a single chemophototherapy treatment following intravenous administration of 6 mg/kg doxorubicin, loaded in liposomes containing small amounts of DOPC and PoP.
Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis.
Apoptosis is accompanied by distinct morphological changes at the plasma and organelle membrane level. Involvement of certain lipids in apoptosis has been established; however, we have limited understanding of the specific lipid structures that participate in this process. We used untargeted comparative lipidomics to study the changes in lipid composition during staurosporine-induced apoptosis in HCT-116. Our results revealed that ceramides, dihydroceramides, and sphingomyelins, with defined acyl chains, constitute the majority of changes in the lipidome. Expression levels and activities of enzymes responsible for the biosynthesis of lipids that change suggest that de novo synthesis causes these specific changes. Further analysis of the lipidome during apoptosis in other cancer and non-cancer cell lines suggested that accumulation of ceramides and dihydroceramides is specific to cancer cells. Taken together, our data propose that these molecules are regulated at the lipid-specific level during apoptosis and that this regulation differs between cancer and non-cancer cells.
Lipids are emerging as key regulators of fundamental cellular processes including cell survival, division, and death. Apoptosis, a form of programmed cell death, is accompanied by numerous membrane-related phenotypic changes. However, we have an incomplete understanding of the involvement of specific lipid structures during this process. Here, we report that triacylglycerols are regulated at the molecular level during 5-fluorouracil-induced apoptosis in HCT-116. Mass-spectrometry-based global lipid profiling shows that specific triacylglycerols accumulate during apoptosis. Expression levels and activities of enzymes that are responsible for the biosynthesis and metabolic processing of triacylglycerols suggest that triacylglycerol biosynthesis is responsible for these accumulations. Based on our data, we propose that regulation of triacylglycerols at the molecular level happens downstream of p53 activation and potentially is a mechanism to prevent lipid oxidation during apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.