Software driven technology has become a part of life and the quality of software largely depends on the extent of effective testing performed during various phases of development. A wide range of nature inspired searching techniques are employed over years to automate the testing process and provide promising solutions to elude the infeasibility of exhaustive testing. These techniques use metaheuristics and work by converting the problem space into search space. A subset of optimized solutions is searched that reduces overall time by shortening the testing time. Objective: An enhanced Artificial Bee Colony-Naïve Bayes optimizer for test case selection is proposed in this paper. This article also aims to provide brief insights into the emergence of hybrid swarminspired techniques over the last two decades. Method: The modified Artificial Bee colony is applied after component selection and further optimization is achieved using Naïve Bayes classifier. The proposed technique is implemented and evaluated taking three benchmark programs into consideration. The proposed technique is also compared to other competitive swarm intelligence-based techniques of its class. Results: The experimental results show that the proposed technique outperforms other swarm-inspired techniques in terms of execution time in a given scenario and capable of higher detection of faults with minimal test case selection. Conclusion: The proposed approach is an improvement over existing techniques and helps in huge time and cost saving. It will contribute to the testing society and enhance the overall quality of the software.
Social media has rapidly expanded over a period of time and generated a huge repository of content. Sentiment analysis of this data has a vast scope in decision support and attracted many researchers to explore various possibilities for technique enhancement and accuracy improvement. Twitter is one of the social media platforms that are widely explored in the area of sentiment analysis. This paper presents a systematic survey related to Social Networking Sites Sentiment Analysis and mainly focus on Twitter sentiment analysis. The paper explores and identifies the techniques and tools used in a well-structured approach to find out the research gaps and identify future scope in this area of research. The techniques evolved over time to improve the efficiency of classification. Total 55 research papers are included in this survey. The result reflects that Twitter is the most explored social networking site for opinion mining. Naïve Bayes and SVM machine learning algorithms are implemented in maximum researches. As the latest advancements, Stack based ensemble, fuzzy based and neural network based classifiers are also implemented to enhance the efficiency of classification. WEKA, R Studio, Python are mostly used tools by research scholars for implementation. The overall evolution of the research goes through various changes in terms of technologies, tools, social media platforms and data corpus targeted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.