No abstract
The current study was designed to explore whether microRNA-146a and its adapter proteins (tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1)) are involved in the pathogenesis of diabetes neuropathy. Twelve male Sprague Dawley rats were randomized into control and diabetic groups (n = 6). Diabetes was induced by a single-dose injection of nicotinamide (110 mg/kg; i.p.), 15 min before injection of streptozotocin (50 mg/kg; i.p.) in 12-h-fasted rats. Diabetic neuropathy was evaluated by hot plate and tail emersion tests, 2 months after the injection of streptozotocin. The gene expression level of microRNA-146a (miR-146a), IRAK1, TRAF6, and nuclear factor kappa B (NF-κB) was measured in the sciatic nerve of rats using the real time-PCR method. Moreover, the activity of NF-κB and the concentration of pro-inflammatory cytokines were determined by the ELISA method. In comparison with the control group, a threefold increase in the expression of miR-146a and NF-κB, and a twofold decrease in the expression of TRAF6 were observed in the sciatic nerve of diabetic rats. Furthermore, the NF-κB activity and the concentration of TNF-α, interleukin 6 (IL-6), and interleukin 1β (IL-1β) in the sciatic nerve of diabetic rats were higher than in those of control counterparts. These results suggest that a defect in the NF-кB-miR-146a negative feedback loop may be involved in the pathogenesis of diabetic neuropathy.
The present study was designed to evaluate whether microRNA-146a and its adapter proteins (TRAF6 and IRAK1) are involved in the pathogenesis of diabetes-induced kidney damage. Male Sprague-Dawley rats were divided into control and diabetic groups (n = 6 in each). Diabetes was induced by injection of streptozotocin (55 mg/kg; i.p.) in 12 h fasted rats. Diabetic kidney damage was diagnosed by renal hypertrophy, thickened glomerular basement membrane, widened filtration slits, mesangial expansion, as well as by elevated levels of blood urea and creatinine in diabetic rats 2 months after induction of diabetes. While the expression of NF-κB mRNA and miR-146a were increased in diabetic kidney compared to the sham controls (p < 0.01 for both comparisons), the mRNA levels of IRAK1 and TRAF6 did not statistically reduce. The NF-κB activity and the concentrations of TNF-α, IL-6 and IL-1β in the kidney of diabetic rats were higher than the kidney of controls (p < 0.05 for TNF-α and NF-κB; p < 0.01 for IL-6 and IL-1β). Our results indicate that the upregulation of miR-146a was not accompanied by downregulation of inflammatory mediators in diabetic kidney. It is possible that a defect in the miR-146a-mediated negative loop provides a situation for sustained activation of NF-κB and its targets to promote cells toward abnormalities.
Thyroid hormone deficiency during fetal life (fetal hypothyroidism) causes intrauterine growth restriction (IUGR). Fetal hypothyroidism (FH) could attenuate normal cardiac functions in the later life of the offspring rats. The aim of this study was to evaluate the contribution of myomiR network and its target gene expression in cardiac dysfunction in fetal hypothyroid rats. Six Pregnant female rats were divided into two groups: Control consumed tap water, and the hypothyroid group received water containing 0.025% 6-propyl-2-thiouracil during gestation. Hearts from male offspring rats in adulthood (month 3) were tested with Langendorff apparatus for measuring hemodynamic parameters. Expressions of miR-208a, -208b, and -499 and its target genes including thyroid hormone receptor 1 (Thrap1), sex-determining region Y-box 6 (Sox6), and purine-rich element-binding protein β (Purβ) were measured by qPCR. FH rats had lower LVDP (%20), +dp/dt (%26), -dp/dt (%20), and heart rate (%21) than controls. FH rats at month 3 had a higher expression of β-MHC (190%), Myh7b (298%), and lower expression of α-MHC (36%) genes in comparison with controls. FH rats at month 3 had a higher expression of miR-499 (520%) and miR-208b (439%) and had lower expression of miR-208a (74%), Thrap1 (47%), Sox6 (49%), and Purβ (45%) compared with controls. Our results showed that thyroid hormone deficiency during fetal life changes the pattern of gene expression of myomiR network and its target genes in fetal heart, which, in turn, resulted in increased β-MHC expression and associated cardiac dysfunction in adulthood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.