Some rhizobacteria have demonstrated a noteworthy role in regulation of plant growth and biomass production under biotic and abiotic stresses. The present study was intended to explicate the ameliorative consequences of halotolerant plant growth-promoting rhizobacteria (HPGPR) on growth of capsicum plants subjected to salt stress. Salt stress was ascertained by supplementing 1 and 2 g NaCl kg soil. The HPGPR positively invigorated growth attributes, chlorophyll, protein contents, and water use efficiency (WUE) of supplemented capsicum plants under salinity stress conditions. Bacillus fortis strain SSB21 caused highest significant increase in shoot length, root length, and fresh and dry biomass production of capsicum plants grown under saline conditions. This multi-trait bacterium also increased biosynthesis of proline and up-regulated the expression profiles of stress related genes including CAPIP2, CaKR1, CaOSM1, and CAChi2. On the other hand, B. fortis strain SSB21 inoculated plants exhibited reduced level of ethylene, lipid peroxidation, and reactive oxygen species (ROS). All these together contribute to activate physiological and biochemical processes involved in the mitigation of the salinity induced stress in capsicum plants.
Background
Wheat is a cool seasoned crop requiring low temperature during grain filling duration and therefore increased temperature causes significant yield reduction. A set of 125 spring wheat genotypes from International Maize and Wheat Improvement Centre (CIMMYT-Mexico) was evaluated for phenological and yield related traits at three locations in Pakistan under normal sowing time and late sowing time for expose to prolonged high temperature. With the help of genome-wide association study using genotyping-by-sequencing, marker trait associations (MTAs) were observed separately for the traits under normal and late sown conditions.
Results
Significant reduction ranging from 9 to 74% was observed in all traits under high temperature. Especially 30, 25, 41 and 66% reduction was observed for days to heading (DH), plant height (PH), spikes per plant (SPP) and yield respectively. We identified 55,954 single nucleotide polymorphisms (SNPs) using genotyping by sequencing of these 125 hexaploid spring wheat genotypes and conducted genome-wide association studies (GWAS) for days to heading (DH), grain filled duration (GFD), plant height (PH), spikes per plant (SPP), grain number per spike (GNS), thousand kernel weight (TKW) and grain yield per plot (GY). Genomic regions identified through GWAS explained up to 13% of the phenotypic variance, on average. A total of 139 marker-trait associations (MTAs) across three wheat genomes (56 on genome A, 55 on B and 28 on D) were identified for all the seven traits studied. For days to heading, 20; grain filled duration, 21; plant height, 23; spikes per plant, 13; grain numbers per spike, 8; thousand kernel weight, 21 and for grain yield, 33 MTAs were detected under normal and late sown conditions.
Conclusions
This study identifies the essential resource of genetics research and underpins the chromosomal regions of seven agronomic traits under normal and high temperature. Significant relationship was observed between the number of favored alleles and trait observations. Fourteen protein coding genes with their respective annotations have been searched with the sequence of seven MTAs which were identified in this study. These findings will be helpful in the development of a breeder friendly platform for the selection of high yielding wheat lines at high temperature areas.
Electronic supplementary material
The online version of this article (10.1186/s12870-019-1754-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.