To develop a full understanding of interactions in nanomagnet arrays is a persistent challenge, critically impacting their technological acceptance. This paper reports the experimental, numerical and analytical investigation of interactions in arrays of Co nanoellipses using the first-order reversal curve (FORC) technique. A mean-field analysis has revealed the physical mechanisms giving rise to all of the observed features: a shift of the non-interacting FORC-ridge at the low-HC end off the local coercivity HC axis; a stretch of the FORC-ridge at the high-HC end without shifting it off the HC axis; and a formation of a tilted edge connected to the ridge at the low-HC end. Changing from flat to Gaussian coercivity distribution produces a negative feature, bends the ridge, and broadens the edge. Finally, nearest neighbor interactions segment the FORC-ridge. These results demonstrate that the FORC approach provides a comprehensive framework to qualitatively and quantitatively decode interactions in nanomagnet arrays.
Magnetic vortices are characterized by the sense of in-plane magnetization circulation and by the polarity of the vortex core. With each having two possible states, there are four possible stable magnetization configurations that can be utilized for a multibit memory cell. Dynamic control of vortex core polarity has been demonstrated using both alternating and pulsed magnetic fields and currents. Here, we show controlled dynamic switching of spin circulation in vortices using nanosecond field pulses by imaging the process with full-field soft X-ray transmission microscopy. The dynamic reversal process is controlled by far-from-equilibrium gyrotropic precession of the vortex core, and the reversal is achieved at significantly reduced field amplitudes when compared with static switching. We further show that both the field pulse amplitude and duration required for efficient circulation reversal can be controlled by appropriate selection of the disk geometry.
We demonstrate a simple method to tailor the magnetization reversal mechanisms of Co/Pt multilayers by depositing them onto large area nanoporous anodized alumina (AAO) with various aspect ratios, A = pore depth/diameter. Magnetization reversal of composite (Co/Pt)/AAO films with large A is governed by strong domain-wall pinning which gradually transforms into a rotation-dominated reversal for samples with smaller A, as investigated by a first-order reversal curve method in conjunction with analysis of the angular dependent switching fields. The change of the magnetization reversal mode is attributed to topographical changes induced by the aspect ratio of the AAO templates.
Reproducible control of the magnetic vortex state in nanomagnets is of critical importance. We report on chirality control by manipulating the size and/or thickness of asymmetric Co dots. Below a critical diameter and/or thickness, chirality control is achieved by the nucleation of single vortex. Interestingly, above these critical dimensions chirality control is realized by the nucleation and subsequent coalescence of two vortices, resulting in a single vortex with the opposite chirality as found in smaller dots. Micromagnetic simulations and magnetic force microscopy highlight the role of edge-bound halfvortices in facilitating the coalescence process.Comment: 15 pages, 4 figure
Dynamic switching of the vortex circulation in magnetic nanodisks by fast rising magnetic field pulse requires annihilation of the vortex core at the disk boundary and reforming a new vortex with the opposite sense of circulation. Here we study the influence of pulse parameters on the dynamics and efficiency of the vortex core annihilation in permalloy (Ni80Fe20) nanodisks. We use magnetic transmission soft x-ray microscopy to experimentally determine a pulse rise time -pulse amplitude phase diagram for vortex circulation switching and investigate the time-resolved evolution of magnetization in different regions of the phase diagram. The experimental phase diagram is compared with an analytical model based on Thiele's equation describing high amplitude vortex core motion in a parabolic potential. We find that the analytical model is in a good agreement with experimental data for a wide range of disk geometries. From the outputs of the analytical model and in accordance with our experimental finding we determine the geometrical condition for dynamic vortex core annihilation and pulse parameters needed for the most efficient and fastest circulation switching. The comparison of our experimental results with micromagnetic simulations show that the micromagnetic simulations of 'ideal' disks with diameters larger than ∼250 nm overestimate nonlinearities in susceptibility and eigenfrequency. This overestimation leads to the core polarity switching near the disk boundary, which then in disagreement with experimental findings prevents the core annihilation and circulation switching. We modify the micromagnetic simulations by introducing the 'boundary region' of reduced magnetization to simulate the experimentally determined susceptibility and in these modified micromagnetic simulations we are able to reproduce the experimentally observed dynamic vortex core annihilation and circulation switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.