Matrix functions of the form f (A)v, where A is a large symmetric matrix, f is a function, and v = 0 is a vector, are commonly approximated by first applying a few, say n, steps of the symmetric Lanczos process to A with the initial vector v in order to determine an orthogonal section of A. The latter is represented by a (small) n × n tridiagonal matrix to which f is applied. This approach uses the n first Lanczos vectors provided by the Lanczos process. However, n steps of the Lanczos process yield n + 1 Lanczos vectors. This paper discusses how the (n + 1)st Lanczos vector can be used to improve the quality of the computed approximation of f (A)v. Also the approximation of expressions of the form v T f (A)v is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.