The global acceptance and off-grid charging of plug-in electric vehicles (PEVs) are expected to grow tremendously in the next few years. Uncoordinated PEV charging can cause serious grid issues such as overloading of transformers and unacceptable voltage drops. Single-phase residential charging can also initiate or contribute to voltage unbalance conditions in the distribution networks. A potential solution and key challenge for PEV integration is shifting of the charging activities to off-peak periods. This paper proposes a new PEV coordination approach based on genetic algorithm (GA) optimization to perform online centralized charging and discharging considering transformer loading and node voltage magnitude and unbalance profiles. It allows PEV as source of active and reactive power to participate in energy market based on different prices during a day, without any degradation. Finally, the impacts of uncoordinated and the proposed GA coordinated PEV charging/discharging strategy are simulated for a real unbalanced Western Australian distribution network in the Perth solar city over 24 h.
The worldwide acceptance of plug-in electric vehicles (PEVs) is expected to tremendously grow in the next few years. Uncoordinated PEV charging can cause serious grid issues such as overloading of transformers and unacceptable voltage drops. Single-phase residential charging can also initiate or contribute to voltage unbalance in distribution networks. A potential solution for the PEV integration is shifting the charging activities from peak to valley periods. Therefore, this paper firstly investigates the impacts of uncoordinated single-phase PEV charging at residential houses on three-phase distribution networks. Then, it proposes a novel PEV charging coordination strategy based on heuristic genetic algorithm (GA) to perform online centralized charging considering transformer loading and bus voltage profiles. Based on this, a decentralized PEV reactive power discharging approach is presented where the reactive power is discharged at selected nodes for further reduction of voltage unbalance. The impacts of uncoordinated PEV charging as well as the performance of the proposed centralized PEV charging and decentralized var discharging strategies are tested on a real unbalanced Western Australian distribution network under the Perth Solar City project over 24 hours. INDEX TERMS Centralized PEV charging, decentralized PEV var discharging, voltage unbalance and distribution network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.