Conductive nanofibers have been considered as one of the most interesting and promising candidate scaffolds for cardiac patch applications with capability to improve cell–cell communication. Here, we successfully fabricated electroconductive nanofibrous patches by simultaneous electrospray of multiwalled carbon nanotubes (MWCNTs) on polyurethane nanofibers. A series of CNT/PU nanocomposites with different weight ratios (2:10, 3:10, and 6:10wt%) were obtained. Scanning electron microscopy, conductivity analysis, water contact angle measurements, and tensile tests were used to characterize the scaffolds. FESEM showed that CNTs were adhered on PU nanofibers and created an interconnected web‐like structures. The SEM images also revealed that the diameters of nanofibers were decreased by increasing CNTs. The electrical conductivity, tensile strength, Young's modulus, and hydrophilicity of CNT/PU nanocomposites also enhanced after adding CNTs. The scaffolds revealed suitable cytocompatibility for H9c2 cells and human umbilical vein endothelial cells (HUVECs). This study indicated that simultaneous electrospinning and electrospray can be used to fabricate conductive CNT/PUnanofibers, resulting in better cytocompatibility and improved interactions between the scaffold and cardiomyoblasts.
Chitosan (CS)-based nanofibrous scaffolds are very promising in tissue engineering applications. However, electrospinning of CS is not possible unless using toxic solvents such as trifluoroacetic acid or by blending with other polymers. In the present study, we investigated CS-based nanofibers' fabrication by blending it with kefiran as a natural polysaccharide. A series of solutions with various CS to kefiran ratios were prepared and underwent electrospinning. The effects of main process parameters, including applied voltage and needle tip-to-collector distance on nanofibers' diameter and morphology, were also studied. Nanofibers containing 80% CS and 20% Kefiran with an average diameter of 81 ± 17 nm were successfully electrospun. Thermogravimetric analysis indicated the presence of both polymers in blend nanofibers. The diameter of CS/kefiran nanofibers increased with enhanced applied voltage, while needle tip-to-collector distance did not significantly affect the mean diameters. Appropriate viability of l929 cells on the obtained scaffolds was demonstrated utilizing Alamar blue assay. Also, cell attachment onto the fiber surface was confirmed by scanning electron microscopy. Results indicated that CS/kefiran nanofibrous scaffolds would be promising for tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.