Semaphorin axonal guidance factors are multifunctional proteins that play important roles in immune response, cancer cell proliferation, and organogenesis, making semaphorins and their signaling receptor plexins important drug targets for various diseases. However, the large and flat binding surface of the semaphorin-plexin interaction interface is difficult to target by traditional small-molecule drugs. Here, we report the discovery of a high-affinity plexin B1 (PlxnB1)-binding macrocyclic peptide, PB1m6 (K = 3.5 nM). PB1m6 specifically inhibited the binding of physiological ligand semaphorin 4D (Sema4D) in vitro and completely suppressed Sema4D-induced cell collapse. Structural studies revealed that PB1m6 binds at a groove between the fifth and sixth blades of the sema domain in PlxnB1 distant from the Sema4D-binding site, indicating the non-competitive and allosteric nature of the inhibitory activity. The discovery of this novel allosteric site can potentially be used to target plexin family proteins for the development of drugs that modulate semaphorin and plexin signaling.
Macrocyclic structure and backbone N-methylation represent characteristic features of peptidic natural products, which play critical roles in their biological activity. Although natural products have been the traditional source of such peptides, recent developments in synthesizing natural product-like macrocyclic peptides using reconstituted translation systems have enabled us to construct vast trillion-member libraries of non-standard macrocyclic peptides. In addition, a method for displaying such libraries on their corresponding mRNA templates allows us to rapidly screen them for potent ligands against various drug targets. This review describes methodologies for the ribosomal synthesis of novel natural product-like macrocyclic peptides and their recent applications in the discovery of bioactive molecules using in vitro display technologies.
Here we report a unique method of ribosomally synthesizing fused tricyclic peptides. Flexizyme-assisted in vitro translation of a linear peptide with the N-terminal chloroacetyl group and four downstream cysteines followed by the addition of 1,3,5-tris(bromomethyl)benzene results in selective production of the fused tricyclic peptide. This technology can be used for the ribosomal synthesis of fused tricyclic peptide libraries for the in vitro selection of bioactive peptides with tricyclic topology.
Protein engineering has great potential for devising multifunctional recombinant proteins to serve as next-generation protein therapeutics, but it often requires drastic modifications of the parental protein scaffolds e.g., additional domains at the N/C-terminus or replacement of a domain by another. A discovery platform system, called RaPID (Random non-standard Peptides Integrated Discovery) system, has enabled rapid discovery of small de novo macrocyclic peptides that bind a target protein with high binding specificity and affinity. Capitalizing on the optimized binding properties of the RaPID-derived peptides, here we show that RaPID-derived pharmacophore sequences can be readily implanted into surface-exposed loops on recombinant proteins and maintain both the parental peptide binding function(s) and the host protein function. We refer to this protein engineering method as lasso-grafting and demonstrate that it can endow specific binding capacity toward various receptors into a diverse set of scaffolds that includes IgG, serum albumin, and even capsid proteins of adeno-associated virus, enabling us to rapidly formulate and produce bi-, tri-, and even tetra-specific binder molecules.
Macrocyclic peptides have gained increasing attention due to their ease of discovery through various in vitro display platforms as well as their potential in possessing favorable properties of both small molecule and antibody drug classes. It is well-known that the avidity achieved through the bivalent binding mode of antibodies gives rise to their slow dissociation rates and thus high potency as drug molecules. Here, we report the synthesis of dimeric thioether-macrocyclic peptides through a branched synthesis approach allowing for synthesis of dimeric peptides in a comparable number of steps as monomers and tunability of linker lengths from 30 to 200 Å. Applying this method to synthesize dimers of a model PlexinB1-binding macrocyclic peptide showed close to 300-fold increases in their apparent binding affinity, bringing the K down from 8 nM to 30 pM as well as affording improved biological activities when compared to their monomeric counterparts. These enhancements demonstrate that this is a simple synthetic strategy to harness the benefits of bivalence that antibodies naturally possess.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.