Focus on the requirement for detecting laser welding defects of lithium battery pole, a new model based on the improved YOLOv5 algorithm was proposed in this paper. First, all the 3 × 3 convolutional kernels in the backbone network were replaced by 6 × 6 convolutional kernels to improve the model’s detection capability of a small defect; second, the last layer of the backbone network was replaced by our designed SPPSE module to enhance the detection accuracy of the model; then the improved RepVGG module was introduced in the head network, which can help to improve the inference speed of the model and enhance the feature extraction capability of the network; finally, SIOU was used as the bounding box regression loss function to improve the accuracy and training speed of the model. The experimental results show that our improved YOLOv5 model achieved 97% mAP and 270 fps on our dataset. Compared with conventional methods, ours had the best results. The ablation experiments were conducted on the publicly available datasets PASCAL VOC and MS COCO, and their mAP@0.5 was improved by 2.4% and 3%, respectively. Additionally, our model improved the average detection rate for small targets on the MS COCO dataset by 2.4%, showing that it can effectively detect small target defects.
Due to the tremendous expectations placed on batteries to produce a reliable and secure product, fault detection has become a critical part of the manufacturing process. Manually, it takes much labor and effort to test each battery individually for manufacturing faults including burning, welding that is too high, missing welds, shifting, welding holes, and so forth. Additionally, manual battery fault detection takes too much time and is extremely expensive. We solved this issue by using image processing and machine learning techniques to automatically detect faults in the battery manufacturing process. Our approach will reduce the need for human intervention, save time, and be easy to implement. A CMOS camera was used to collect a large number of images belonging to eight common battery manufacturing faults. The welding area of the batteries’ positive and negative terminals was captured from different distances, between 40 and 50 cm. Before deploying the learning models, first, we used the CNN for feature extraction from the image data. To over-sample the dataset, we used the Synthetic Minority Over-sampling Technique (SMOTE) since the dataset was highly imbalanced, resulting in over-fitting of the learning model. Several machine learning and deep learning models were deployed on the CNN-extracted features and over-sampled data. Random forest achieved a significant 84% accuracy with our proposed approach. Additionally, we applied K-fold cross-validation with the proposed approach to validate the significance of the approach, and the logistic regression achieved an 81.897% mean accuracy score and a +/− 0.0255 standard deviation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.