In this work, a numerical method is applied for obtaining numerical solutions of Fredholm two-dimensional functional linear integral equations based on the radial basis function (RBF). To find the approximate solutions of these types of equations, first, we approximate the unknown function as a finite series in terms of basic functions. Then, by using the proposed method, we give a formula for determining the unknown function. Using this formula, we obtain a numerical method for solving Fredholm two-dimensional functional linear integral equations. Using the proposed method, we get a system of linear algebraic equations which are solved by an iteration method. In the end, the accuracy and applicability of the proposed method are shown through some numerical applications.
In this paper, a coincidence theorem is obtained which is generalization of Ky Fan's fixed point theorem in modular function spaces. A modular version of Fan's minimax inequality is proved. Moreover, some best approximation theorems are presented for multi-valued mappings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.