Background: Shunt Infection is a common complication of shunt insertion in children which can lead to bad neuro-developmental conditions and impose a considerable economic burden for the health care system. So, identifying predictive factors of shunt infection could help us in the proper improvement of this deteriorating condition. Methods: In this study, related risk factors of 68 patients with history of shunt infection and 80 matched controls without any history of shunt infection, who were all operated in a single referral hospital were assessed. Three machine learning (ML)-based measures including sparsity, correlation, and redundancy along with specialist’s score were applied to select the most important predictive risk factors for shunt infection. ML was determined by summation of sparsity, correlation and redundancy measures, and the final total score was considered as normalization (ML-based score + specialist score). Results: According to the total score, prematurity, first ventriculoperitoneal shunting (VPS) age, intraventricular hemorrhage (IVH), myelomeningocele (MMC) and low birth weight had higher weights as shunt infection risk factors. icterus, trauma, co-infection and tumor had the lowest weights and history of meningitis and number of shunt revisions were defined as intermediate risk factors. Conclusion: The "ML-based clinical adjusted" method may be used as a complementary tool to help neurosurgeons in better patient selection and more accurate follow-up of children with higher risk of shunt infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.