We introduce FPBench, a standard benchmark format for validation and optimization of numerical accuracy in floating-point computations. FPBench is a first step toward addressing an increasing need in our community for comparisons and combinations of tools from different application domains. To this end, FPBench provides a basic floatingpoint benchmark format and accuracy measures for comparing different tools. The FPBench format and measures allow comparing and composing different floating-point tools. We describe the FPBench format and measures and show that FPBench expresses benchmarks from recent papers in the literature, by building an initial benchmark suite drawn from these papers. We intend for FPBench to grow into a standard benchmark suite for the members of the floating-point tools research community. 3 We are using |S| to denote the number of elements in a set S 4 Where n is the number of arguments. 5 Where N is the number of valid inputs, and n is the number of arguments.
International audiencehe dangers of programs performing floating- point computations are well known. This is due to the sensitivity of the results to the way formulæ are written. These last years, several techniques have been proposed concerning the transformation of arithmetic expressions in order to improve their numerical accuracy and, in this arti- cle, we go one step further by automatically transforming larger pieces of code containing assignments and control structures. We define a set of transformation rules allowing the generation, under certain conditions and in polynomial time, of larger expressions by performing limited formal computations, possibly among several iterations of a loop. These larger expressions are better suited to improve, by reparsing, the numerical accuracy of the program results. We use abstract interpretation-based static analysis techniques to over-approximate the round-off errors in programs and during the transformation of expressions. A tool has been implemented and experimental results are presented con- cerning classical numerical algorithms and algorithms for embedded systems
International audienceNumerical programs performing floating-point computations are very sensitive to the way formulas are written. These last years, several techniques have been proposed concerning the transformation of arithmetic expressions in order to improve their accuracy and, in this article , we go one step further by automatically transforming larger pieces of code containing assignments and control structures. We define a set of transformation rules allowing the generation, under certain conditions and in polynomial time, of larger expressions by performing limited formal computations, possibly among several iterations of a loop. These larger expressions are better suited to improve the numerical accuracy of the target variable. We use abstract interpretation-based static analysis techniques to over-approximate the roundoff errors in programs and during the transformation of expressions. A prototype has been implemented and experimental results are presented concerning classical numerical algorithm analysis and algorithm for embedded systems
This article describes Salsa, an automatic tool to improve the accuracy of the floating- point computations done in numerical codes. Based on static analysis methods by abstract interpretation, our tool takes as input an original program, applies to it a set of transformations and then generates an optimized program which is more accurate than the initial one. The original and the transformed programs are written in the same imperative language. This article is a concise description of former work on the techniques implemented in Salsa, extended with a presentation of the main software architecture, the inputs and outputs of the tool as well as experimental results obtained by applying our tool on a set of sample programs coming from embedded systems and numerical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.