The Dermo interface system caused less pressure within the prosthetic socket compared to the Seal-In X5 interface system during stair negotiation. The qualitative survey also showed that the prosthesis users experienced fewer problems and increased satisfaction with the Dermo interface system.
BackgroundThe interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee’s satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system.MethodsThe air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study.ResultsThe subject’s dynamic pressure on the socket that’s applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours.ConclusionThe air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics.
With increasing usage of polyethylene terephthalate (PET) wastes polluting the oceans and environment, the recycling of PET wastes has become a crucial issue to be overcome. In this article, a review of the different technologies that have been developed to recycle PET wastes and common routes for recycled PET (rPET) is presented. The impacts of varied recycling technologies on the properties of rPET are also discussed herein. The review also focuses on the recovered products by each of the technology and their uses that have been reincorporated into new applications for example, from plastic bottle wastes to 3D scaffolds for biomedical application. Different recycling technologies such as reactive extrusion, chemical recycling and dissolution/precipitation exhibit specific properties due to the influence of the different concepts from one technology to another. A new trend called electrospinning of rPET to produce nanofibers has also garnered attention to be used for different applications. This article will first introduce the recycling technologies concept, and then the properties of the recovered product will be discussed and finally, we will focus on the applications of rPET produced from each of the technologies in various fields such as construction, textile, filtration, and biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.