While the password-based authentication used in social networks, e-mail, e-commerce, and online banking is vulnerable to hackings, biometric-based continuous authentication systems have been used successfully to handle the rise in unauthorized accesses. In this study, an empirical evaluation of online continuous authentication (CA) and anomaly detection (AD) based on mouse clickstream data analysis is presented. This research started by gathering a set of online mouse-dynamics information from 20 participants by using software developed for collecting mouse information, extracting approximately 87 features from the raw dataset. In contrast to previous work, the efficiency of CA and AD was studied using different machine learning (ML) and deep learning (DL) algorithms, namely, decision tree classifier (DT), k-nearest neighbor classifier (KNN), random forest classifier (RF), and convolutional neural network classifier (CNN). User identification was determined by using three scenarios: Scenario A, a single mouse movement action; Scenario B, a single point-and-click action; and Scenario C, a set of mouse movement and point-and-click actions. The results show that each classifier is capable of distinguishing between an authentic user and a fraudulent user with a comparatively high degree of accuracy.
Purpose
This study aims to propose an unsupervised learning model to evaluate the credibility of disaster-related Twitter data and present a performance comparison with commonly used supervised machine learning models.
Design/methodology/approach
First historical tweets on two recent hurricane events are collected via Twitter API. Then a credibility scoring system is implemented in which the tweet features are analyzed to give a credibility score and credibility label to the tweet. After that, supervised machine learning classification is implemented using various classification algorithms and their performances are compared.
Findings
The proposed unsupervised learning model could enhance the emergency response by providing a fast way to determine the credibility of disaster-related tweets. Additionally, the comparison of the supervised classification models reveals that the Random Forest classifier performs significantly better than the SVM and Logistic Regression classifiers in classifying the credibility of disaster-related tweets.
Originality/value
In this paper, an unsupervised 10-point scoring model is proposed to evaluate the tweets’ credibility based on the user-based and content-based features. This technique could be used to evaluate the credibility of disaster-related tweets on future hurricanes and would have the potential to enhance emergency response during critical events. The comparative study of different supervised learning methods has revealed effective supervised learning methods for evaluating the credibility of Tweeter data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.