To limit N-fertilizer applied on wheat, cultivars that use N more efficiently are needed. Our objective was to investigate differences of nitrogen utilization in varieties by studying qualitative and quantitative proteins expression. Two wheat varieties, 'Arche' and 'Récital', were grown under controlled conditions at four N levels (0, 2, 8, and 20 mg N/plant/day) with two replicates. The number of tillers/plant, aerial dry weight/plant and total N content were measured after two months. Two-dimensional gel electrophoresis was also performed on leaf protein extracts. Analyses of variance showed that the N level effect was highly significant for the number of tillers/plant, aerial dry weight and N content. The variety x N level interaction was significant for N content. Analyses of variance on % volume carried out for 524 spots showed a significant variety effect for 55 spots and a significant N treatment effect for 76 spots. Twenty spots showed a significant variety x N treatment interaction. Fourteen proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible role of these proteins, eight of which belong to the carbon metabolism, is discussed.
Proteomics is becoming a necessity in plant biology, as it is in medicine, zoology and microbiology, for deciphering the function and role of the genes that are or will be sequenced. In this review we focus on the various, mainly genetic, applications of the proteomic tools that have been developed in recent years: characterization of individuals or lines, estimation of genetic variability within and between populations, establishment of genetic distances that can be used in phylogenetic studies, characterization of mutants and localization of the genes encoding the revealed proteins. Improvements in specifically devoted software have permitted precise quantification of the variation in amounts of proteins, leading to the concept of “protein quantity loci” which, combined with the “quantitative trait loci” approach, results in testable hypotheses regarding the role of “candidate proteins” in the metabolism or phenotype under study. This new development is exemplified by the reaction of plants to drought, a trait of major agronomic interest. The accumulation of data regarding genomic and cDNA sequencing will be connected to the protein databases currently developed in plants.
A detailed genomic map was constructed for one F1 individual of maritime pine, using randomly amplified polymorphic DNA (RAPD) and protein markers scored on megagametophytes of germinated seeds. Proteins allowed the localization of exclusively coding DNA in the large genome of this Pinus species, mapped with RAPD markers that essentially fail within repetitive (i.e. mostly noncoding) DNA. Dot blots experiments of 53 RAPD fragments showed that 89 per cent amplified from highly repetitive chromosomal regions. The map comprised 463 loci, including 436 RAPDs amplified from 142 10-mer oligonucleotide primers and 27 protein loci. Twelve major and one minor linkage groups were identified using a LOD score 5 and a recombination fraction ® 0.30. A framework map was ordered with an interval support 4, covering 1860 cM which provided almost complete coverage of the maritime pine genome. The average distance between two framework markers was 8.3 cM; only one interval was larger than 30 cM. Protein loci were well distributed throughout the map. Their potential use as anchor points to join RAPD-based maps is discussed. Finally, the genomic maps of Arabidopsis and maritime pine were compared. Linkage groups were shown to have similar total map lengths on a chromosomal basis, despite a 57-fold difference in DNA content.
BackgroundFreezing provokes severe yield losses to different fall-sown annual legumes. Understanding the molecular bases of freezing tolerance is of great interest for breeding programs. Medicago truncatula Gaertn. is an annual temperate forage legume that has been chosen as a model species for agronomically and economically important legume crops. The present study aimed to identify positional candidate genes for a major freezing tolerance quantitative trait locus that was previously mapped to M. truncatula chromosome 6 (Mt-FTQTL6) using the LR3 population derived from a cross between the freezing-tolerant accession F83005-5 and the freezing-sensitive accession DZA045-5.ResultsThe confidence interval of Mt-FTQTL6 was narrowed down to the region comprised between markers MTIC153 and NT6054 using recombinant F7 and F8 lines. A bacterial-artificial chromosome (BAC) clone contig map was constructed in an attempt to close the residual assembly gap existing therein. Twenty positional candidate genes including twelve C-repeat binding factor (CBF)/dehydration-responsive element binding factor 1 (DREB1) genes were identified from BAC-derived sequences and whole-genome shotgun sequences (WGS). CBF/DREB1 genes are organized in a tandem array within an approximately 296-Kb region. Eleven CBF/DREB1 genes were isolated and sequenced from F83005-5 and DZA045-5 which revealed high polymorphism among these accessions. Unique features characterizing CBF/DREB1 genes from M. truncatula, such as alternative splicing and large tandem duplication, are elucidated for the first time.ConclusionsOverall, twenty genes were identified as potential candidates to explain Mt-FTQTL6 effect. Their future functional characterization will uncover the gene(s) involved in freezing tolerance difference observed between F83005-5 and DZA045-5. Knowledge transfer for breeding improvement of crop legumes is expected. Furthermore, CBF/DREB1 related data will certainly have a large impact on research studies targeting this group of transcriptional activators in M. truncatula and other legume species.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-14-814) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.