Under STZ-diabetic conditions, cardiac fibrosis is associated with a dysregulation in extracellular matrix degradation. This condition is featured by reduced MMP-2 activity, concomitant with increased Smad 7 and TIMP-2 and decreased MT1-MMP protein expression, which differs from mechanisms involved in dilated and ischemic heart disease.
To investigate the effect of anti-cytokine-based therapy in the course of diabetic cardiomyopathy, we performed a study using an anti-TNF-alpha monoclonal antibody treatment (mab) in Sprague male Dawley (SD) rats with streptozotocin-induced diabetic cardiomyopathy. Five days after streptozotocin injection, rats were treated with the anti-TNF-alpha mAb C432A for 6 weeks.At the end of the study, left ventricular (LV) function was determined by a pressure-catheter. Intercellular adhesion molecule (ICAM)-1, vascular adhesion molecule (VCAM)-1, beta2-lymphocyte-integrins(+) (CD18(+), CD11a(+), CD11b(+)), ED1/CD68(+) and cytokine (TNF-alpha, interleukin (IL)-1beta)- expressing infiltrates, total collagen content and stainings of collagen I and III were quantified by digital image analysis. LV phosphorylated and total ERK protein levels were determined by Western Blot. TNFalpha-antagonism reduced ICAM-1- and VCAM-1 expression and leukocyte infiltration to levels of non-diabetics and decreased macrophage residence by 3.3-fold compared with untreated diabetics. In addition, anti-TNF-alpha mAb-treatment decreased diabetes-induced cardiac TNF-alpha and IL-1beta expression by 2.0-fold and 1.8- fold, respectively, and reduced the ratio of phosphorylated to total ERK by 2.7-fold. The reduction in intramyocardial inflammation was associated with a 5.4-fold and 3.6-fold reduction in cardiac collagen I and III content, respectively. This was reflected by a normalization of cardiac total collagen content to levels of non-diabetics and associated with an improved LV function. TNFalpha-antagonism attenuates the development of experimental diabetic cardiomyopathy associated with a reduction of intramyocardial inflammation and cardiac fibrosis.
OBJECTIVE-We investigated the effect of pharmacological inhibition of the interleukin converting enzyme (ICE) on cardiac inflammation, apoptosis, fibrosis, and left ventricular function in an animal model of diabetes.RESEARCH DESIGN AND METHODS-Diabetes was induced in 24 Sprague-Dawley rats by injection of streptozotozin (STZ) (70 mg/kg). Diabetic animals were treated with the interleukin converting enzyme (ICE) inhibitor (ICEI) (n ϭ 12) or with a placebo (n ϭ 12). Nondiabetic rats served as controls (n ϭ 12). Left ventricular function was documented 6 weeks after induction of diabetes. Cardiac tissue was analyzed for the expression of cytokines, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, leukocyte and macrophage integrins, and collagen. Phosphorylation of Akt was analyzed by Western blot and apoptosis by Blc-2 and Bax measurements.RESULTS-Left ventricular function was significantly impaired in diabetic animals. This was accompanied by a significant increase of cytokines, cell adhesion molecules, leukocytes and macrophages, and collagen content. In addition, the phosphorylation state of Akt was reduced. These changes were significantly attenuated in the diabetic group treated with ICEI.CONCLUSIONS-Cardiac dysfunction is associated with cardiac inflammation in experimental diabetic cardiomyopathy. Both of these-cardiac dysfunction and inflammation-are attenuated after treatment with ICEI. These data suggest that anticytokine-based therapies might be beneficial in diabetic cardiomyopathy.
Aims/hypothesis Emerging evidence suggests that statins exert beneficial effects beyond those predicted by their cholesterollowering actions. We investigated whether atorvastatin influences the development of left ventricular (LV) dysfunction, independently of cholesterol-lowering, in an experimental model of type 1 diabetes mellitus cardiomyopathy. Methods Streptozotocin-induced diabetic rats were treated with atorvastatin (50 mg/kg daily, orally) or with vehicle for 6 weeks. LV function was analysed using tip-catheter measurements. Cardiac stainings of TNF-α, IL-1β, intercellular adhesion molecule-1, vascular cellular adhesion molecule-1, CD11a/lymphocyte-associated antigen-1, CD11b/ macrophage antigen alpha, CD18/β2-integrin, ED1/CD68, collagen I and III, and Sirius Red were assessed by digital image analysis. Ras-related C3 botulinum toxin substrate (RAC1) and ras homologue gene family, member A (RHOA) activities were determined by RAC1 glutathione-S-transferasep21-activated kinase and rhotekin pull-down assays, respectively. Cardiac lipid peroxides were measured by a colorimetric assay. The phosphorylation state of p38 mitogen-activated protein kinase (MAPK) and endothelial nitric oxide synthase (eNOS) protein production were analysed by western blot. Results Diabetes was associated with induced cardiac stainings of TNF-α, IL-1β, cellular adhesion molecules, increased leucocyte infiltration, macrophage residence and cardiac collagen content. In contrast, atorvastatin reduced both intramyocardial inflammation and myocardial fibrosis, resulting in improved LV function. This effect was paralleled with a normalisation of diabetes-induced RAC1 and RHOA activity, in the absence of LDL-cholesterol lowering. In addition, atorvastatin decreased diabetesinduced cardiac lipid peroxide levels and p38 MAPK phosphorylation by 1.3-fold (p<0.05) and 3.2-fold (p<0.0005), respectively, and normalised the reduced eNOS production caused by diabetes. Conclusions/interpretation These data indicate that atorvastatin, independently of its LDL-cholesterol-lowering capacity, reduces intramyocardial inflammation and myocardial fibrosis, resulting in improved LV function in an experimental model of diabetic cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.