Tensegrities are assembly structures, getting their equilibrium from the integrity between tension in cables and compression in bars. During their service life, slacking in their cables and nearness to buckling in their bars need to be monitored to avoid a sudden collapse. This paper discusses how to design the tensegrities to make them feasible for vibrational health monitoring methods. Four topics are discussed; suitable finite elements formulation, pre-measurements analysis to find the locations of excitation and sensors for the interesting modes, the effects from some environmental conditions, and the pre-understanding of the effects from different slacking scenarios.
The changes in dynamic properties such as natural frequencies and mode shapes are used in vibration health monitoring as tools for assessing the structures health status. They are, however, also affected by environmental conditions like wind, humidity and temperature changes. Of particular importance is the change of the environmental temperature, and it is the most commonly considered environmental variable that influences the vibration health monitoring algorithms. This paper discusses how cable-strut structures can be designed such that their first natural frequency is less sensitive to the temperature changes. The optimization problem is solved by using a genetic algorithm. The level of pre-stress can be regulated to achieve the solution, particularly when a symmetric self-stress vector is chosen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.