In the recent years, additive manufacturing became an interesting topic in many fields due to the ease of manufacturing complex objects. However, it is impossible to determine the mechanical properties of any additive manufacturing parts without testing them. In this work, the mechanical properties with focus on ultimate tensile strength and modulus of elasticity of 3D printed acrylonitrile butadi-ene styrene (ABS) specimens were investigated. The tensile tests were carried using Zwick Z005 loading machine with a capacity of 5KN according to the American Society for Testing and Materials (ASTM) D638 standard test methods for tensile properties of plastics. The aim of this study is to investigate the influence of printing direction on the mechanical properties of the printed specimens. Thus, for each printing direction ( and ), five specimens were printed. Tensile testing of the 3D printed ABS specimens showed that the printing direction made the strongest specimen at an ultimate tensile strength of 22 MPa while at printing direction it showed 12 MPa. No influence on the modulus of elasticity was noticed. The experimental results are presented in the manuscript.
Cranioplasty is a surgery used to repair a bone defect in the skull caused by an injury. It involves lifting the scalp and restoring the contour of the skull with an implant usually manufactured by additive manufacturing. The cranial implant is a sensitive topic; thus, it must be manufactured to the highest standards. Medical implants are growing significantly due to industrial digitalization and the rapid development of industrial software. With the help of computed Tomography (CT) equipment, a spatial, rotating model of the patient's current state can be obtained quickly, even in minutes where the replacement part of the deficiency can be perfectly designed. Although this requires considerable routine, computational capacity, and time, but taking advantage of the latest software presented in our manuscript, the development time of the implant can be up to 50 times shorter with significant improvements in suitability and adaptability. Subsequently, we can produce more accurate implants with more accessible and faster manufacturing with our developed method. The development steps and methods of designing an implant are described in our article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.