Refurbished heritage buildings usually lack in meeting the required standards defined for the new function especially when reused as educational buildings. Therefore, they are usually equipped with different post-occupancy retrofit strategies to achieve an acceptable level of environmental quality and energy demand. Daylight quality and the distribution of natural light is a critical issue in educational spaces, given that the low level of illuminance in classrooms can decrease students' performance and disrupt visual tasks. In this study, daylight performance of below-grade south-facing classrooms in a heritage building in Tehran, Iran is investigated by implementing 57 different daylighting retrofit strategies using climate-based daylight simulations, in relation to the metric Useful Daylight Illuminance 300-3000lux (UDI-Autonomous). The research proposes the use of reflectors on the interior ceiling and exterior side of the windows (on the ground) to achieve the highest result possible. Although, applying these two systems individually, can boost the spatial distribution of daylight to 75 % and 71%, respectively, the combination of them provide users with UDI-Autonomous in 99% of the classroom space for more than half of the occupancy time.
Building envelopes invariably tend to be static systems that encounter various performance limitations such as inefficient illuminance admittance, and heat and moisture transmission owing to their non-responsiveness towards environmental fluctuations. In contrast to such façade solutions, responsive façade systems with embedded sensing, actuation, and control systems have been proven to perform with up to 65% higher efficiency by being able to adapt their physical characters, such as orientation, and material property in real-time as a response to fluctuating environmental conditions (visual and thermal) and user preferences. Advancements in artificial intelligence and machine learning processes further aid such responsive façade systems to optimize multiple parameters such as illuminance level and the associated lighting energy, visual discomfort caused by solar glare, solar heat gain, thermal resistance (heating energy and comfort level), and natural ventilation simultaneously. This research investigates the case of a real-time adaptive Building Integrated Photo Voltaic (BIPV) shading system and its ability (in comparison with traditional static building integrated photo voltaic façade systems) to perform as regards visual comfort and energy generation potential simultaneously within the humid subtropical climate of Sydney, Australia. A simulated case scenario wherein a real-time adaptive building integrated photo voltaic shading systems is deployed on a typical multistorey building façade in Sydney, Australia is accordingly presented. The conducted simulation considers the responsive building integrated photo voltaic system as a double-skin façade system and uses multi-objective evolutionary computing principles to decipher its integrability potential. A comparative analysis between traditional static mounted Photo Voltaic (PV) systems as opposed to multi-objective optimization driven real-time adaptive building integrated photo voltaic shading configurations is subsequently presented. The ability to maximize generated energy, while simultaneously maintaining visual comfort is thus a unique proposition of this research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.